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Abstract

We consider the problem of packing a set of rectangular items into a strip of fixed width,
without overlapping, using minimum height. Items must be packed with their edges parallel
to those of the strip, but rotation by 90◦ is allowed. The problem is usually solved through
branch-and-bound algorithms. We propose an alternative method, based on Benders’ de-
composition. The master problem is solved through a new ILP model based on the arc flow
formulation, while constraint programming is used to solve the slave problem. The resulting
method is hybridized with a state-of-the-art branch-and-bound algorithm. Computational
experiments on classical benchmarks from the literature show the effectiveness of the pro-
posed approach. We additionally show that the algorithm can be successfully used to solve
relevant related problems, like rectangle packing and pallet loading.

Keywords: Orthogonal stock cutting problem, Logic based Benders’ decomposition,
Rectangle packing, Pallet loading

1. Introduction

Given n rectangular items of integer width wj and height hj (j = 1, . . . , n) and a strip

of fixed width W , the orthogonal Stock Cutting Problem (SCP) consists in packing all the
items into the strip without overlapping and using the minimum strip height. Items must
be packed with their edges parallel to those of the strip, but rotation by 90◦ is allowed. The
oriented counterpart of the SCP, in which rotation is not allowed, is known in the literature
as the Strip Packing Problem (SPP, see, e.g., Martello, Monaci, and Vigo [1]). Both the
SCP and the SPP are important because they have many real world applications, especially
in wood, paper, glass, and metal industries (see, e.g., Lodi, Martello, and Monaci [2]).

It is not difficult to see that the SCP is NP-hard in the strong sense. Consider indeed the
famous (one-dimensional) bin packing problem (BPP): partition n elements, having values
vj (j = 1, . . . , n) into the minimum number of subsets so that the sum of the values in each
subset does not exceed a given capacity V (see Delorme, Iori, and Martello [3] for a recent
exhaustive survey). Any BPP instance can be transformed into an equivalent SCP instance
by setting W = V and, for j = 1, . . . , n, wj = vj and hj = W + 1. Its solution will consist
of the minimum number of “shelves” of height W + 1, and hence it will provide the optimal
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solution to the BPP instance. The BPP is known to be NP-hard in the strong sense, so the
same holds for the SCP.

According to the classification introduced by Lodi, Martello, and Vigo [4], the SCP and
the SPP can be characterized as 2SP|R|F and 2SP|O|F, respectively, while in the general
cutting and packing typology by Wäscher, Haußner, and Schumann [5] both problems are
categorized as two-dimensional open dimension problem.

In this paper we present an exact algorithm for the SCP. In Section 2 we review suc-
cessful approaches that have been proposed in the literature for the SCP, the SPP, and
related problems. In Section 3 we provide a mathematical model for the SCP. Preprocessing
techniques and initial lower and upper bound computations are discussed in Section 4. The
proposed algorithm is given in Sections 5, 6, 7, and 8. The outcome of extensive computa-
tional experiments is presented in Section 9, where we also discuss some relevant variants of
the problem.

2. Literature review

Most of the techniques developed in the literature to solve the SCP and the SPP are com-
binatorial branch-and-bound algorithms. One of the first branch-and-bound approaches for
the SPP was proposed by Martello, Monaci, and Vigo [1] in the early noughties. The algo-
rithm makes use of preprocessing techniques, dominance criteria, and a powerful lower bound
based on a problem oriented continuous relaxation. In the same period, Lesh, Marks, McMa-
hon, and Mitzenmacher [6] proposed a branch-and-bound algorithm specifically tailored for
perfect-packing cases, in which the optimal solution has no loss space, i.e.,

∑n

j=1wjhj = WH ,
where H denotes the height of the optimal solution. The algorithm is based on powerful cuts
that fathom nodes for which the current partial packing cannot be filled by the remaining
items without inserting a ‘hole’. Later on, Alvarez-Valdes, Parreño, and Tamarit [7], as well
as Boschetti and Montaletti [8] obtained better branch-and-bound algorithms by improving
the dominance criteria and the bounding techniques proposed in [1].

In recent years, new types of exact methods were proposed by Westerlund, Papageorgiou,
and Westerlund [9] and by Castro and Oliveira [10], who tried Mixed Integer Linear Pro-

gramming (MILP) models to solve more general classes of problems, that include the SPP.
The latter also made computational experiments on SPP instances, but the results were not
encouraging, as the proposed approaches generally perform worse than the ‘old’ Martello,
Monaci, and Vigo [1] branch-and-bound algorithm. Côté, Dell’Amico, and Iori [11] found
better results by using a Benders’ decomposition in which the master problem is a MILP
model and the slave is solved through branch-and-bound.

To the best of our knowledge, Jakobs [12] was the first to propose a metaheuristic (genetic)
algorithm for the SPP. Since then, many metaheuristics have been proposed, e.g., by Iori,
Martello, and Monaci [13] to cite a well-known approach. As the focus of this paper is on
exact solutions, we do not give an exhaustive list of heuristic and metaheuristic algorithms:
the interested reader can refer to the recent articles by Özcan, Kai, and Drake [14] and by
Thomas and Chaudhari [15] for updated reference lists.

Coming to the SCP, the literature particularly focused on heuristics and metaheuristics
rather than on exact methods: see, e.g., Burke, Kendall, and Whitwel [16] for a classical
approach, or Wei, Oon, and Lim [17] for an extensive literature review. To the best of our
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knowledge, the only exact approaches for the SCP were proposed by Kenmochi, Imamichi,
Nonobe, Yagiura, and Nagamochi [18] and by Arahori, Imamichi, and Nagamochi [19]. Both
approaches are based on branch-and-bound techniques. The former algorithm transforms a
general instance into a perfect-packing one by adding small items of size 1×1. It then applies
a branch-and-bound method that fathoms nodes through powerful cuts derived from those
proposed in [6] (see above). The latter algorithm improves the enumeration scheme by adding
innovative cuts and strong fathoming criteria. According to the computational experiments
presented in [19] this can be considered the state of the art of the exact algorithms for the
SCP. Note that these two algorithms are also used for the SPP, and that both present very
competitive results on this problem variant too.

In the last decades, several problems related to the SCP were also studied. We cite in
particular the problems of Packing Squares into a Square (PSS) and of Packing Rectangles

into a Square with Rotation (PRSR), which ask for the minimum area square required to pack
a given set of items. As we will see, the approach we propose can be easily applied to solve
them. In the early nineties, Leung, Tam, Wong, Young, and Chin [6] proved that the PSS
is strongly NP-hard, hence the same holds for PRSR. The two problems have been studied
by Picouleau [20], who gave some simple heuristics for the PSS, by Caprara, Lodi, Martello,
and Monaci [21], who proposed lower bounds and determined their worst-case performance,
and by Correa [22], who presented a polynomial-time approximation scheme for the PRSR.
To the best of our knowledge, the only exact approach for the PSS and the PRSR is the one
proposed by Martello and Monaci [23].

Another related problem to which our approach can be extended is the Pallet Loading

Problem (PLP), which consists in packing the maximum number of identical rectangles into
a given larger rectangle. This problem, whose complexity status is currently unknown, was
introduced in the late sixties by Barnett and Kynch [24] and then extensively studied by
many researchers, who proposed both exact methods (see, e.g., Dowsland [25], Alvarez-
Valdes, Parreño, and Tamarit [26], or Ahn, Park, and Yoon [27]) and powerful heuristics
(see, e.g., Lins, Lins, and Morabito [28] or Birgin, Lobato, and Morabito [29]). The number
of references being huge, we refer the interested reader to the recent, very complete survey
by Silva, Oliveira, and Wäscher [30].

The exact approach we propose is based on the logic based Benders’ decomposition, that
was formally developed by Hooker [31], and applied with success by Hooker and Ottosson
[32] to 0-1 programming and by Hooker [33] to planning and scheduling problems. The
approach was later specialized to mixed integer programming by Codato and Fischetti [34]
who introduced the so-called combinatorial Benders’ cuts. Such cuts were successfully used
by Côté, Dell’Amico, and Iori [11] for solving the SPP. In the logic based Benders’ decom-

position, the classical master problem is frequently solved as a MILP and the slave through
constraint programming (although other solution techniques can be used). Constraint pro-
gramming techniques were used by Clautiaux, Jouglet, Carlier, and Moukrim [35] to solve
the recognition version of the SPP.

3. Mathematical model

We assume the existence of a coordinate system with origin in the bottom-left corner of
the strip, having integer coordinates on the horizontal (width) and the vertical (height) axis.
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For any integer coordinate i on the width axis, we call the unit-width vertical space above
interval [i, i+ 1) a column. We say that an item j engages a column q whenever j is packed
so as to occupy a portion of column q. We will use the following notation

• N = {1, 2, . . . , n, n+1, . . . , 2n} = set of the given n items (j = 1, 2, . . . , n) followed by
a copy of each of them rotated by 90◦, i.e., such that wj = hj−n and hj = wj−n (j =
n+ 1, n+ 2, . . . , 2n);

• W = {0, 1, . . . ,W − 1} = set of all integer width coordinates (abscissae) where the
bottom left corner of an item can be packed;

• W(j, q) = {q−wj +1, . . . , q} = set of integer abscissae a such that, if item j is packed
with its bottom-left corner at a (at any ordinate), then it engages column q.

From now on, when no confusion arises, we will use the term ‘item’ to denote either an
input item or a rotated copy. By introducing decision variables

• xjp = binary variable taking the value 1 if the bottom-left corner of item j is packed
at abscissa p, and the value 0 otherwise (j ∈ N , p ∈ W);

• yj = ordinate at which the bottom edge of item j is packed (j ∈ N );

• z = overall height of the packing,

the SCP can be modeled as:

min z (1)
∑

p∈W

xjp + x(n+j)p = 1 j = 1, 2, . . . , n, (2)

yj + hj ≤ z j ∈ N , (3)

nonoverlap



[yj , yj + hj], j ∈ N :

∑

p∈W(j,q)

xjp = 1



 q ∈ W, (4)

xjp ∈ {0, 1} j ∈ N , p ∈ W, (5)

yj ≥ 0 j ∈ N , integer. (6)

Constraints (2) ensure that each item is packed exactly once, either rotated or not.
Constraints (3) impose that no item exceeds the height of the strip. Logical constraints (4)
(of “constraint programming” flavor) prevent items from overlapping by imposing, for each
column q, that the vertical intervals [yj, yj + hj) associated with all items j that engage
column q do not overlap.

Constraints (4) can equivalently be expressed through linear inequalities, as done by
Baldacci and Boschetti [36] and by Castro and Oliveira [10]. However computational exper-
iments (see, e.g., [10]) show that the direct use of the resulting mathematical model with an
MILP solver is not very effective. In the next sections we show that decomposition techniques
produce instead reduced models that can be solved more easily.
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4. Preprocessing

We adapted a number of techniques from the literature to preprocess SCP instances
through reduction, heuristic initialization, and lower bound computations.

A size reduction of strip and item width is attempted through an adaptation to the SCP
of two techniques proposed by Boschetti and Montaletti [8] for the SPP:

(a) determine, through dynamic programming, the maximum width W ′ ≤ W that can be
obtained by packing side by side any subset of the given items: if W ′ < W , then the
strip width can be set to W ′;

(b) for each item j ∈ N compute, through dynamic programming, the maximum width
w′

j that a subset of items can take when packed side by side with j: if wj + w′
j < W ,

then the item width can be increased to W − w′
j. Note that, after this process, the

width (resp. height) of an item j > n is no longer necessarily equal to the height (resp.
width) of item j − n (see Section 3).

A third reduction technique, also presented in [8] but developed by Martello, Monaci, and
Vigo [1] for the SPP, is based on a dominance criterion that packs at the bottom of the
strip some large items and all the small items that would fit side by side with the large ones,
provided such a packing is possible. However, its extension to the SCP appears to have little
usefulness, due to difficulty in handling the possible rotation of the considered large items.

As mentioned in Section 2, several heuristics exist for the SCP. We adopted the best-fit

heuristic by Burke, Kendall, and Whitwel [16], which is relatively simple and has a good
average performance. We implemented the three versions proposed in [16], that differ from
each other in the position where the next item is packed (Leftmost, Next to Tallest Neighbor,
Next to Shortest Neighbor).

Concerning lower bounds, we computed a value LB as the best (higher) between

(i) the simple bound L1 = max
(
⌈
∑n

j=1wjhj/W ⌉,maxj=1,...,n{min(wj, hj)}
)
, and

(ii) L2 = rounded up solution value of the continuous relaxation of the Integer Linear

Programming (ILP) model that will be introduced in Section 6.

Once LB has been computed, we execute a truncated (heuristic) version of the branch-
and-bound algorithm proposed by Kenmochi, Imamichi, Nonobe, Yagiura, and Nagamochi
[18], which looks for a feasible solution of value LB: we selected the so called G-staircase

placement with DP cuts, as its performance on particular types of instance (where the
unused space is very small) was shown to be very good. Such strategy maintains, at each
decision node, a staircase-shape envelope that separates the two regions where the next
items may or may not be placed. We limited the exploration of the branch-decision tree by:
(i) heuristically killing decision nodes that are unlikely to lead to an optimal solution, and
(ii) cutting out “small” portions of the strip region available to the next packings with the
objective of maintaining a low number of steps in the staircase.
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5. Decomposition algorithm

The decomposition introduced by Benders [37] solves a difficult problem through the
iterative solution of two subproblems: the master problem and the slave problem. The
master is generally a relaxation of the given problem, while the slave either provides an
overall optimal solution or generates cuts to be added to the master at the next iteration.
The algorithm we propose is derived from relatively recent developments of this technique:
the logic based Benders’ decomposition (Hooker [31]) and the combinatorial Benders’ cuts
(Codato and Fischetti [34]). The latter method was used by Côté, Dell’Amico and Iori [11]
for the SPP.

Our master problem is an extension of the One-Dimensional Contiguous Bin-Packing

Problem (1CBP), a relaxation that was introduced by Martello, Monaci, and Vigo [1] for the
SPP. For the SPP, the 1CBP is obtained by horizontally ‘cutting’ each two-dimensional wj×
hj item into hj unit height slices of length wj, and the objective is to pack all resulting slices
into the minimum number of one-dimensional bins of capacity W so that slices belonging to
the same item are packed into contiguous bins.

The master problem we developed solves a variant of the 1CBP in which each item j is
vertically cut into wj unit width slices of height hj . It then looks for a feasible solution of
threshold value LB (the capacity of the one-dimensional bin) that contiguously packs the
slices into at most W bins. In addition, it is necessary to take into account the possibility
of rotating the items, and hence both copies of each two-dimensional item (see Section 3)
are cut into slices, and we impose that the solution packs only one of the two sets of slices.
Figure 1(a) provides a pictorial representation of a master problem solution.

In Section 6 we describe the approach we developed for solving the master problem. Once
the master has been solved, the slave must check the feasibility of the resulting solution for
the original SCP by looking for a rearrangement of the slices that reconstructs the original
two-dimensional items without exceeding the height of the strip produced by the master.

Figure 1 (a) master problem solution; (b) corresponding SCP solution
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Figure 1(b) shows an SCP solution corresponding to the master solution of Figure 1(a). In
Section 7 we discuss the approach we adopted for its solution.

The overall approach we propose starts with preprocessing and sets a possible strip height
at a threshold provided by a lower bound. At each iteration, it looks for a feasible solution
of value equal to the current threshold through the above master-slave method. If it can
prove that no such solution exists, then the threshold is conveniently increased. The method
can be summarized as follows.

Algorithm SINGLE:

1. reduce the instance (see Section 4);
2. execute the best-fit heuristics to obtain an upper bound UB, and compute lower bound

LB (see Section 4);
3. execute the truncated branch-and-bound heuristic (see Section 4);
4. if a solution of value LB has been obtained then UB := LB and terminate;

while UB > LB do

5. exactly solve the master problem with threshold height LB (see Section 4);
6. if no solution of value LB is found then remove all cuts, increase LB, and continue;
7. exactly solve the slave problem;
8. if a solution of value LB is obtained then UB := LB and terminate;
9. add improved Benders’ cuts to the master problem (see Section 7)

end while.

In many cases, the value of UB is not much higher than that of LB, and hence increasing
LB by one at Step 6 is a reasonable choice. (In our computational experiments, we rarely
found instances with z > LB +1.) For different cases, a binary search between LB and UB
could be preferable.

6. Master problem

As mentioned in Section 5, the aim of the master problem is to find a feasible solution
of given value LB (threshold) to an adaptation of the one-dimensional bin packing problem
with contiguity constraints. In [11], the master arising from the SPP was solved using two
exact algorithms: a combinatorial branch-and-bound and, when it fails due to time limit,
the Benders’ decomposition of a mathematical model given by the oriented version of (1),
(2), and (5), with an additional constraint imposing that, for any column, the sum of the
heights of the items engaging it does not exceed z.

Our master was solved through an ILP model of an adaptation of the 1CBP introduced
in [1] for the SPP (see Section 5). The type of modeling we adopted has its roots in the
ARCFLOW model proposed by Valério de Carvalho [38] for the one-dimensional cutting
stock problem. (Note that, in spite of its similar name, this problem is totally different from
the two-dimensional problem we are considering.) We make use of a directed graph with
W + 1 vertices 0, 1, . . . ,W , and arc set A = A1 ∪ · · · ∪ A2n ∪A0 where

Aj = {(d, e) : 0 ≤ d < e ≤ W and e− d = wj} (j = 1, . . . , 2n) (7)

and A0 = {(d, d+ 1) : 0 ≤ d < W}. In other words, there is an arc between two vertices d
and e if there is an item (either an input item or a rotated copy) whose width is equal to
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e − d. In addition, there is a set A0 of loss arcs, corresponding to identical dummy items
having unit width and height, used for ensuring flow conservation, as it will be clear from
the model.

Consider the following numerical example: n = 3, W = 5, w1 = 5, h1 = 1, w2 = h2 = 3,
w3 = h3 = 2: Figure 2 shows the resulting graph (disregard by the moment the values on
the arcs, which give the item heights). The topmost arc corresponds to input item 1, non
rotated (A1). Then we have the three arcs corresponding to input item 2 (A2 ≡ A5) and the
four arcs corresponding to input item 3 (A3 ≡ A6). Finally , the loss arcs (A0, dotted) and,
on the bottom, the five arcs corresponding to the rotated copy of item 1 (A4). (Note that,
formally, one should also have a second, useless, copy of the arc sets corresponding to input
items 2 and 3, for which, however, rotation does not make sense.)

Let us introduce variables x̄jde (j = 0, . . . , 2n, d = 0, . . . ,W − 1, e = 1, . . . ,W ) to
represent the number of times arc (d, e) ∈ Aj is selected. For j = 1, 2, . . . , 2n, binary
variable x̄jde takes the value 1 iff item j is selected and packed with its bottom left corner
at abscissa d, engaging columns d, d+ 1, . . . , e− 1. For j = 0, x̄jde is a non-negative integer
variable giving the number of 1 × 1 dummy items packed at abscissa d. Let us denote by
δ−j (e) (resp. δ+j (e)) the set of arcs of Aj entering (resp. emanating from) vertex e. The
master problem is then to find a feasible solution to

2n∑

j=0


−

∑

(d,e)∈δ−
j
(e)

hj x̄jde +
∑

(e,f)∈δ+
j
(e)

hj x̄jef


 =






LB if e = 0;
−LB if e = W ;
0 otherwise,

e = 0, 1, . . . ,W, (8)

∑

(d,e)∈Aj

x̄jde +
∑

(d,e)∈An+j

x̄(n+j)de = 1 j = 1, 2, . . . , n, (9)

x̄jde ∈ {0, 1} j = 1, 2 . . . , 2n; (d, e) ∈ Aj , (10)

x̄0de ≥ 0, integer (d, e) ∈ A0. (11)

Constraints (8) impose: (i) the solution value LB to the flow emanating from node 0 and to
that entering node W (hence ensuring that every item is entirely packed within the strip),
and (ii) the flow conservation at nodes 1, . . . ,W − 1. Constraints (9) impose that, for each
item j, either the original item or its rotated version is packed. The model has W + n + 1
constraints and O(nW ) variables (as, from (7), each arc set Aj has no more than W arcs).

In Figure 2, the values on the arcs represent the height of the corresponding items, i.e.,
in the model, the flow that circulates along the arc every time it is selected. For the previous
numerical example, Figure 3 shows the arcs selected in a feasible solution of threshold value

Figure 2 Arcs generated for the example instance
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Figure 3 Set of arcs selected in the optimal solution of the master for the example instance
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3, while Figure 4 provides a possible graphical representation of such solution. The non-zero
x̄jde values are

• x̄2,0,3 = 1, i.e., item 2 has its bottom left corner packed at abscissa 0, it engages columns
0, 1, 2, occupying three height units in each of them;

• x̄3,3,5 = 1, i.e., item 3 has its bottom left corner packed at abscissa 3, it engages columns
3, 4, occupying two height units in each of them;

• x̄4,0,5 = 1, i.e., item 4 (the rotated copy of item 1) has its bottom left corner packed at
abscissa 0, it engages columns 0, 1, 2, 3, 4, occupying one height unit in each of them;

• x̄0,3,4 = x̄0,4,5 = 1, i.e., loss arcs engage one height unit (waste) in columns 3 and 4 (to
satisfy the flow conservation constraints).

7. Slave problem and cut generation

Let [x̄s
jde] be the solution to the current master problem, and zs (equal to the current

threshold LB) its value. The solution identifies a subset N s ⊂ N containing one copy (either
rotated or not) of each of the n input items, together with the corresponding abscissa, and
hence the columns engaged by the item. The slave problem, y-check in the following, is then
to decide if there exists an ordinate for each item j ∈ N s such that all items are packed
without overlapping and without exceeding the height of the strip. This problem is known
to be NP-hard, as shown by Côté, Dell’Amico, and Iori [11].

Figure 4 Graphical representation of an optimal master solution for the example instance
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The y-check problem arising for the SPP was attacked in [11] through a specialized
branch-and-bound algorithm. We preferred to explore the possibility of obtaining an ef-
fective overall algorithm by solving the slave through a simpler, non-tailored constraint
programming approach. Remind that, for each item j, wj and hj give its width and height
in the selected orientation. The slave problem is then to find ordinates yj (j ∈ N s) satisfying
(see (1)-(6))

yj + hj ≤ zs j ∈ N s, (12)

nonoverlap



[yj, yj + hj ], j ∈ N s :

∑

p∈W(j,q)

x̄s
jp(p+wj)

= 1



 q ∈ W, (13)

yj ≥ 0, integer j ∈ N s. (14)

Constraints (12) impose that no item exceeds the height of the strip, while constraints
(13) impose that no two items overlap. If the slave problem returns a solution satisfying
(12)-(14), then we know that the original SCP instance has been optimally solved.

If instead the slave can prove that no feasible solution to (12)-(14) exists, we generate
a set of lifted combinatorial Benders’ cuts, following the method developed in [11] for the
SPP:

(i) heuristically find a (possibly small) subset Ñ s ⊆ N s of items such that any solution
including them at their current abscissa is infeasible for the slave;

(ii) solve an LP to identify, for each item j ∈ Ñ s, an interval [lsj , r
s
j ] that includes its current

abscissa, and has the following property: If all the items j ∈ Ñ s are in the master
solution, each with the abscissa in [lsj , r

s
j ], then the same (infeasible) slave problem will

be obtained;

(iii) add a cut to prohibit this, i.e.,

∑

j∈Ñ s

∑

(d,e)∈Aj ,l
s
j
≤d≤rs

j

x̄jde ≤ |Ñ s| − 1. (15)

Observe that cuts (15) are only valid for a given threshold value zs = LB: a certain
master solution [x̄s

jde] can be infeasible for LB, but feasible, at a subsequent iteration, for
a higher threshold value. This corrects an imprecision in the overall descriptive model of
Section 2.3 in [11], that was pointed out by Hashimoto, Hu, Imahori, and Yagiura [39].

8. The case of identical item copies

The approach we have introduced so far is obviously valid if the input instance includes a
number of identical items. For such cases however, a more effective algorithm, called MULTI
in the following, can be obtained through simple modifications of SINGLE:

• at Step 1, the item width increase (b) of Section 4 is deactivated in order to avoid the
creation of dissimilarities among copies of identical items;
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• at Step 5, we can group together identical items: letm denote the number of items that
are different from each other and bj the number of copies of item j (j = 1, 2, . . . , m).
We then perform a modified version of the master (8)-(11), in which n is replaced by
m, constraints (9) become

∑

(d,e)∈Aj

x̄jde +
∑

(d,e)∈Am+j

x̄(m+j)de = bj j = 1, 2, . . . , m, (16)

while (10) and (11) merge to

x̄jde ≥ 0, integer j = 0, 1, . . . , 2m; (d, e) ∈ Aj . (17)

For j = 1, 2, . . . , 2m, x̄jde is now a non-negative integer variable giving the number of
copies of item j that are selected and packed with their bottom left corner at abscissa
d, engaging columns d, d + 1, . . . , e − 1. The meaning of x̄0de does not change. Once
the master problem has been solved, we map its solution into the original instance;

• at Step 7, for pairs of identical items (j, k) (j, k ∈ N s, j < k) assigned to the same
abscissa, it is imposed that yj < yk, in order to avoid symmetries in the slave problem;

• at Step 9, as constraint (15) does not extend to general integer variables, when the
slave proves that (12)-(14) has no solution, instead of adding a cut, we kill the decision
node producing x̄jde in the master enumeration tree.

Our overall approach, referred to as DIM in the following, executes algorithm SINGLE of
Section 5 when all items are different, and algorithm MULTI otherwise.

9. Computational experiments

In order to test the effectiveness of the proposed approach we performed extensive com-
putational experiments on classical SCP instances from the literature. As we will see, our
approach can be easily modified to handle relevant variants of the problem. We thus also
tested it on literature instances of the square and rectangle packing problems PSS and PRSR,
as well as of the pallet loading problem PLP (see Section 2).

We used CPLEX 12.6.0 for all steps of the algorithm: master, slave, and cuts. The
logical constraints used in the slave were IloNoOverlap (which models constraints (13)) and
in addition, for MULTI, IloEndBeforeStart (to avoid symmetries). In the implementation
of SINGLE, the slave problem was invoked within the lazy callback procedure, while in
that of MULTI it was invoked within the incumbent callback procedure. Both procedures
are available in the branch-and-cut framework, so, as soon as the master produces a decision
node with integer solution, the slave checks it for feasibility: if the check fails, SINGLE adds
new cuts (15) to the master, while MULTI just kills the corresponding decision node. This
implementation of the logic based Benders’ decomposition is sometimes called branch-and-

check (see Thorsteinsson [40]).
The experiments were performed on an Intel Xeon E3-1220 3.10 GHz with 8 GB RAM,

equipped with four cores. In order to have a fair comparison with other algorithms and
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machines, we always used a single core. The time limit was set to 3 600 seconds per instance,
with a limit of 10 seconds for the execution of the truncated heuristic of Section 4.

The performance of DIM was compared with that of other algorithms, in most cases using
the results published by their authors. As the involved computers used have different speeds,
we evaluated the CPU performances using the indicators given by PassMark c© Software (see
https://www.cpubenchmark.net/). The indicator for our computer is 6 106. Concerning
G-Staircase, the best algorithm among those presented by Kenmochi, Imamichi, Nonobe,
Yagiura, and Nagamochi [18], the experiments were re-run using a working copy of the orig-
inal code, kindly provided by the authors. (These experiments confirmed a good reliability
of the PassMark indicators.)

Furthermore, different authors adopted different ways for handling the cases of time
limit in the evaluation of the average CPU time: some included the time limits in the
computations, some did not. In order to allow comparisons, our tables provide, for each
algorithm, the average CPU times (in seconds) relative to the instances solved to proven
optimality, and their number (# opt). The highest number of solved instances is highlighted
in bold.

All the instances we used for our experiments can be downloaded from the library of
codes and instances of the University of Bologna Operations Research Group, http://or.
dei.unibo.it/library. In the following, we examine the outcome of the computational
experiments on the different instance classes.

9.1. SCP instances

This is the main benchmark, as it refers to instances of the problem DIM is tailored for.
We used the following classical two dimensional instances from the literature:

• NGCUT: a set of 12 knapsack instances proposed by Beasley [41];

• CGCUT: a set of 3 knapsack instances proposed by Christofides and Whitlock [42];

• GCUT: a set of 13 knapsack instances proposed by Beasley [43];

• BENG: a set of 10 packing instances proposed by Bengtsson [44];

• HT: a set of 9 SCP instances proposed by Hopper and Turton [45];

• BKW: a set of 13 SCP instances proposed by Burke, Kendall, and Whitwell [16];

• CLASS01, ..., CLASS10: ten sets of 50 bin packing instances each (six proposed by
Berkey and Wang [46], and four later proposed by Martello and Vigo [47]). Each class
is composed by five groups of 10 instances each, with n = 20, 40, 60, 80, and 100,
respectively.

For all cases, but HT and BKW, the strip width W was set to the width of the original
two-dimensional container (knapsack or bin).

The performance of Algorithm DIM was compared with that of the algorithms by Ken-
mochi, Imamichi, Nonobe, Yagiura, and Nagamochi [18] and by Arahori, Imamichi, and
Nagamochi [19]. The experiments reported in the latter paper were made on a Pentium
4 3.0GHz, with a time limit of 3 600 seconds. The performance indicators of this machine
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is 357, i.e., the entries in Table 1 for the algorithm in [19] should be multiplied by 0.058.
For the instances for which a comparison with both other SCP algorithms can be done,
it turns out that DIM always solved at least all the instances solved by the best between
the algorithms in [18] and [19], sometimes with higher, sometimes with smaller CPU times.
Similar results were obtained for instances CLASS*, that could only be compared with the
working code provided by the authors of [18]. It can be observed that, for both algorithms,
CLASS01 and CLASS02 are relatively easy, CLASS03 and CLASS04 are difficult, while
CLASS05, CLASS06, CLASS07, CLASS08, and CLASS10 are extremely hard. The most
relevant difference concerns CLASS09, for which DIM appears especially powerful. This
could be explained by the fact that the instances of such class have a number of items with
large width and height: their packing frequently creates large “holes” in the strip, and hence
lower bounds are not tight, while the ARCFLOW model performs well because the number
of arcs is small.

By comparing our experiments with those in [11], we can observe that allowing item
rotation considerably increases the difficulty of the problem. For example, the instances of
CLASS07 (which were all solved in the oriented case) have many oblong horizontal items: this
allows a powerful initial reduction through dominance criteria when the items are oriented
(which makes the instance quite easy to solve), but no reduction at all when they can be
rotated.

Worth is mentioning that we solved for the first time instance GCUT02: The optimal
solution is reported in Figure 5, where item numbers and (possibly rotated) sizes are provided
within the rectangles. The solution was obtained in 108 CPU seconds.

9.2. Rectangle packings

In this section we deal with the rectangle packing problems mentioned in Section 2.
Given n rectangular items of integer width wj and height hj (j = 1, . . . , n), problem PRSR

Table 1: SCP instances. CPU times to be multiplied by 0.058 for [19]

Name # inst.
Arahori et. al [19] Kenmochi et. al [18] Algorithm DIM

# opt. Avg. time (s) # opt. Avg. time (s) # opt. Avg. time (s)

NGCUT 12 12 0.4 11 1.0 12 25.8
CGCUT 3 2 0.0 2 0.2 2 0.2

GCUT1-4 4 1 0.8 1 141.6 2 59.2
GCUT5-13 9 - - 2 425.7 5 35.9

BENG 10 10 0.1 10 0.2 10 0.2
HT 9 9 0.0 9 0.1 9 0.2

BKW1-12 12 - - 9 6.7 9 1.0
BKW13 1 - - 0 - 0 -

CLASS01 50 - - 44 2 50 0.4
CLASS02 50 - - 50 0 50 0.3
CLASS03 50 - - 2 82.9 9 846.2
CLASS04 50 - - 18 35.6 19 145.3
CLASS05 50 - - 0 - 1 1289.4
CLASS06 50 - - 0 - 0 -
CLASS07 50 - - 0 - 0 -
CLASS08 50 - - 0 - 0 -
CLASS09 50 - - 0 - 45 293.3
CLASS10 50 - - 0 - 2 1400.4
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Figure 5 Optimal solution found for GCUT02 (W = 250, zopt = 1118)
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asks for the minimum area square needed to pack all the items without overlapping. The
special case in which wj = hj for all j is denoted as PSS. Both problems can be solved

through Algorithm DIM as follows. We set W = LB =
⌈√∑n

j=1wjhj

⌉
, and we execute

DIM. While no feasible solution is found, we increase both W and LB by one unit, and
iterate. We evaluated this approach on classical instances from the literature, and compared
our results with those obtained by Martello and Monaci [23] through a specialized algorithm
that attempts squares of different size through binary search, namely:

• NGCUT, CGCUT, GCUT, BENG: see Section 9.1;

• GARD: PSS instances with wj = hj = j for j = 1, . . . , n, proposed by Gardner [48];

• KORF: PRSR instances with wj = j, hj = j + 1 for j = 1, . . . , n, proposed by Korf,
Moffitt, and Pollack [49].

• RND S: 200 PSS instances proposed by Martello and Monaci [23];

• RND R: 200 PRSR instances proposed by Martello and Monaci [23].

Both RND S and RND R consist of four groups of 50 instances each, with n = 5, 10, 15,
and 20, respectively.

The experiments in [23] were made on an Intel i5-750 CPU (2.67 GHz), using IBM-ILOG
Cplex 12.5.1 and Gurobi 5.6, with a time limit of 3 600 seconds per instance. The performance
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indicator for such computer is 3 732, so the entries given in Table 2 for this algorithm should
be multiplied by 0.611. The results show that Algorithm DIM always solved at least all the
instances solved in [23], in several cases with smaller CPU times. In particular, all BENG
instances were solved to proven optimality, and 5 more GARD instances were solved with
respect to [23]. (Note however that 6 additional instances were solved by Korf, Moffitt, and
Pollack [49] through a highly specialized algorithm.) Worth is mentioning that instances
RND * with n ≥ 15 confirm to be very difficult to solve exactly. We tested DIM with a
larger time limit on the only RND R 10 instance it could not solve: a proven optimal solution
was found in 3 918 seconds.

Table 2: Rectangle packing instances. CPU times to be multiplied by 0.611 for [23]

Name # inst.
Martello and Monaci [23] Algorithm DIM
# opt. Avg. time (s) # opt. Avg. time (s)

NGCUT 12 10 357.1 12 67.1
BENG 10 3 0.0 10 0.2

CGCUT 3 0 - 1 734.6
GCUT 13 3 560 3 742.7
KORF 40 17 73.6 24 2.2
GARD 40 16 2.2 21 191.1

RND S 05 50 50 0.0 50 0.3
RND S 10 50 50 341.2 50 81.8
RND S 15 50 5 186.9 5 894.3
RND S 20 50 0 - 0 -
RND R 05 50 50 0.0 50 0.4
RND R 10 50 39 384.2 49 464.2
RND R 15 50 0 - 0 -
RND R 20 50 0 - 0 -

9.3. Pallet loading

Our last set of experiments was performed on instances of the pallet loading problem
(PLP). Given a rectangle of width W and height H , the problem is to pack into it, without
overlapping, the maximum number of identical rectangular items of integer width w1 and
height h1. We attacked the problem through Algorithm DIM as follows. We initialize n to⌊

WH
w1h1

⌋
(an obvious upper bound on the solution value), we define wj = w1, hj = h1 for

j = 2, . . . , n, we set LB = H , and we execute DIM. While no feasible solution is found, we
decrease n by one, and iterate.

The PLP has been intensively studied since the sixties, and many specialized algorithms
have been proposed for its solution. The comprehensive recent survey by Silva, Oliveira, and
Wäscher [30] has a bibliography of over fifty references, and examines computational exper-
iments from the literature involving some three million instances. Additional experiments
are reported by Ahn, Park, and Yoon [27]. (The two articles appeared almost at the same
time, so they do not cite each other.).

Although the MULTI version of our approach exploits the identical item property, it is
not guided in any way by the very strong property that all items are identical, nor it uses
the powerful heuristics and upper bounds that such property exploits. Our objective here
was not to beat very specialized algorithms, but to see if we could solve to proven optimality
some previously unsolved, or very difficult to solve, instances from the literature. We thus
tested MULTI on
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• GROUP1, ..., GROUP5: five sets, each containing between 10 and 21 instances, used
by Ahn, Park, and Yoon [27];

• HARD II: a set of 241 instances that were identified by Alvarez-Valdes, Parreño, and
Tamarit [26] as the most difficult ones among the 40 609 “Cover II” instances they
tested. (All these instances have been solved to proven optimality (see Birgin, Lobato,
and Morabito [29]);

• HARD III: a subset of 970 instances for which optimality is hard to prove, among the
98016 initially proposed in set “Cover III” by Alvarez-Valdes, Parreño, and Tamarit
[50]. Attempts to exactly solve such instances, identified by Birgin, Lobato, and Mora-
bito [29], is currently underway (see the web page http://lagrange.ime.usp.br/

~lobato/packing/cover3.php they maintain);

• SAMPLE59: a set of 59 instances selected by Silva, Oliveira, and Wäscher [30] as
particularly significant, as they have been used as benchmark instances in at least two
numerical experiments from the literature.

For all instances but most of those in HARD III, the optimal solution is known. The
available information about the solution times is not uniform. For GROUP*, Ahn, Park,
and Yoon [27] provide the average CPU times for their exact solution, obtained on an Intel
I5-750 CPU, 3 GB, with performance indicator 4 277 (i.e., their times should be multiplied
by 0.7). For HARD II, Alvarez-Valdes, Parreño and Tamarit [26] provide the median CPU
time obtained by using CPLEX 7.0 on a PC Pentium III 850 MHz, CPLEX 7.0. We found
no precise indicator for such computer: on the basis of indicators for similar machines, it
should be very low (below 300), so their times should be multiplied by 0.05. For HARD III
and SAMPLE59, no complete information on the solution times is available. In Table 3 we
provide the comparable information for our approach.

The results show a good performance of DIM on all GROUP* instances but GROUP4
(probably because such instances are characterized by very large W and H values). The
algorithm was also successful for HARD II instances, although no significant comparison
with [26] can be done because of the big difference between the two CPLEX versions used.
We solved to proven optimality the great majority of HARD III and SAMPLE59 instances
within reasonable CPU times. The only unsolved SAMPLE59 instance is #58. Worth is
mentioning that we solved 28 out of the 29 instances that have been indicated by Silva,
Oliveira, and Wäscher [30] as those on which exact algorithms should be tested. Such
instances (in parentheses the CPU times) are: #18 (7.4 s), #40 (0.6 s), #42 to #45 (0.3 s,
15.1 s, 1.5 s, 80.5 s), #26 to #34 (each in less than 0.7 s), #46 to #51 (each in less than 1.0
s), #52 (68.0 s), #53 (0.2 s), #54 (236.8 s), #55 (697.2 s), #56 (2.1 s), #57 (0.7 s), #58
(unsolved after 3 600 s), and #59 (5.5 s).

The results obtained on HARD III are particularly relevant, as optimality was still not
proven for most (683) of these 970 instances. We were able to solve exactly 849 instances. In
all such cases, it turned out that the lower bound found by the most powerful PLP heuristics
was the optimal solution value, enforcing the conjecture of Birgin, Lobato, and Morabito [29]
that their recursive partitioning approach always finds the optimal solution.
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Table 3: Pallet loading instances. CPU times to be multiplied by 0.700 for [27], and by 0.05
for [26]

Name # inst.
Ahn et. al [27] Alvarez-Valdes et. al [26] Algorithm DIM

# opt. Avg. time (s) # opt. Med. time (s) # opt. Avg. time (s) Med. time (s)

G1 17 17 0.0 17 0.3 0.3
G2 21 20 2.3 21 4.6 0.4
G3 17 17 2.9 17 8.3 0.4
G4 15 14 530.5 9 11.3 39.9
G5 10 8 278.8 10 20.1 7.3

HARD II 241 204 506.9 237 17.9 1.3

HARD III 970 849 282.8 0.3
SAMPLE59 59 58 19.5 0.2

10. Conclusion

We have presented a logic based Benders’ decomposition approach for the orthogonal
stock cutting problem. We initially consider as the master a relaxation of the problem, that
consists of a one-dimensional bin packing problem with contiguity constraints. We solve
it through an ILP model based on the ARCFLOW formulation. The slave then checks,
through constraint programming, if the solution obtained can lead to a feasible solution for
the original problem. If the attempt is unsuccessful, we prevent the master to replicate the
current solution, either by adding cuts or by killing the corresponding decision node, and
iterate. Computational experiments on classical benchmarks from the literature show that
the algorithm compares favorably with state-of-the art approaches. In particular, it solved
for the first time instance GCUT02. We also tested an adaptation of the algorithm to other
relevant problems. For rectangle packing problems, the algorithm compared favorably with
a recent specialized algorithm. It also showed a good performance on hard instances of
the pallet loading problem, solving 849 out of 970 instances for most of which the known
solutions were not proved to be optimal.
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