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HARNACK INEQUALITY FOR HYPOELLIPTIC SECOND

ORDER PARTIAL DIFFERENTIAL OPERATORS

ALESSIA E. KOGOJ AND SERGIO POLIDORO

Abstract. We consider nonnegative solutions u : Ω −→ R of second order

hypoelliptic equations

Lu(x) =
n
∑

i,j=1

∂xi

(

aij(x)∂xj
u(x)

)

+
n
∑

i=1

bi(x)∂xi
u(x) = 0,

where Ω is a bounded open subset of Rn and x denotes the point of Ω. For

any fixed x0 ∈ Ω, we prove a Harnack inequality of this type

sup
K

u ≤ CKu(x0) ∀ u s.t. L u = 0, u ≥ 0,

where K is any compact subset of the interior of the L -propagation set of x0

and the constant CK does not depend on u.

1. Introduction

We consider second order partial differential operators L acting on functions

u ∈ C2(Ω) as follows

(1.1) L u(x) :=

n∑

i,j=1

∂xi

(
aij(x)∂xj

u(x)
)
+

n∑

i=1

bi(x)∂xi
u(x)

for x belonging to any open bounded subset Ω of Rn. The coefficients aij , bi are real

functions and belong to C∞(Ω) for 1 ≤ i, j ≤ n. Moreover, A := (aij) is a n × n

symmetric and non-negative matrix. We also assume the following hypotheses:

(H1) L − β and L ∗ are hypoelliptic for every constant β ≥ 0;

(H2) infΩ a11 > 0.

We recall that L is said hypoelliptic if every distribution u in Ω such that L u ∈

C∞(Ω) is a smooth function. We note that condition (H2) ensures that for every

x ∈ Ω there exists ξ ∈ Rn such that 〈A(x)ξ, ξ〉 > 0 that is L is non-totally

degenerate, in accordance with Definition 5.1 in [Bon69]. We can drop condition

(H2) if the operator L̃ = ∂2
xn+1

+ L acting on Rn+1 satisfies (H1) (see Corollary

2).
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The main result of this paper is the following Harnack inequality for the non-

negative solutions of the equation L u = 0. It obviously applies to the Laplacian

and to the heat operators and in these cases it restores the classical elliptic and

parabolic Harnack inequalities.

Theorem 1. Assume that L statisfies (H1) and (H2). Let x0 in Ω and let K be

any compact set contained in the interior of P(x0,Ω), then there exists a positive

constant C = C(x0,K,Ω,L ) such that

sup
K

u ≤ Cu(x0),

for every non-negative solution u of L u = 0 in Ω.

We introduce here the definition of L -propagation set P(x0,Ω) appearing it the

above statement. It is the set of all points x reachable from x0 by a propagation

path:

P(x0,Ω) := {x ∈ Ω | ∃ γ L -propagation path, γ(0) = x0, γ(T ) = x}.

A L -propagation path is any absolutely continuous path γ : [0, T ] −→ Ω such

that

γ′(t) =

n∑

j=1

λj(t)Xj(γ(t)) + µ(t)Y (γ(t)) a.e. in [0, T ]

for suitable piecewise constant real functions λ1, . . . , λn, and µ, µ ≥ 0.

X1(x), . . . , Xn(x), Y (x) are the vector fields defined in the following way:

(1.2) Xj(x) :=

n∑

i=1

aji(x)∂xi
, j = 1, . . . , n, Y (x) :=

n∑

i=1

bi(x)∂xi
.

As we said at the beginning of the Introduction, our main result can holds also

under somehow weaker assumptions on L . Only in the following Corollary the

hypotheses (H1) and (H2) on L are replaced by the assumption that the operator

L̃ = ∂2
xn+1

+ L in Rn+1 satisfies (H1). Of course if L̃ satisfies assumption (H1)

then also L does. A simple example of operator satisfying the hypotheses of this

Corollary but not the ones of Theorem 1 is ∂x1
= x1

2∂2
x2

in R2.

Corollary 2. If the operator L̃ = ∂2
xn+1

+ L acting on Ω×R satisfies (H1) then

for every x0 in Ω and for every compact set K contained in the interior of the

L -propagation set P(x0,Ω), there exists a positive constant C = C(x0,K,Ω,L )

such that

sup
K

u ≤ Cu(x0),

for every non-negative solution u of L u = 0 in Ω.
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The notion of propagation set P(x0,Ω) has been introduced by Amano in his

work on maximum principle (see [Ama79, Theorem 2]). In our case it reads as

follows.

Assume that u is a (smooth) solution of L u = 0 in Ω. If u attains its maximum

at a point x0 in Ω, then u ≡ u(x0) in P(x0,Ω).

The Amano maximum principle is a crucial tool to prove Theorem 1 using the ab-

stract Harnack inequality of the Potential Theory ([CC72, Proposition 6.1.5]). We

observe that Harnack inequalities based on results of Potential Theory were proved

in [BLU02, Theorem 4.2] for heat equations on Carnot groups and in [CNP10, The-

orem 1.1] and in [CMP15, Theorem 5.2] for more general evolution equations. The

class of hypoelliptic operators considered in [CNP10, CMP15] is

(1.3)
m∑

j=1

X̃2
j (y) + X̃0(y)− ∂t,

where X̃j are smooth vector fields on RN and (y, t) denoted the point of any subset

of R
N+1. We explicitly note that operator (1.3) is a particular example of the

operators (1.1), with respect to the variable x = (y, t). In both papers the operators

are assumed left translation invariant w.r.t. a Lie group in R
N+1 and endowed with

a global fundamental solution. We point out that the use of the fundamental solution

is a key step in verifying the separation axiom of the axiomatic Potential Theory.

The approach used in this note allows us to prove the validity of the separation

axiom in Section 2.4 without requiring the existence of any global fundamental

solution on every bounded open set. We rely only on hypoellipticity, on non total

degeneracy of L and the following maximum principle due to Picone that we recall

for the sake of completeness.

Let V be any open (bounded) subset of Ω. Assume that exists a function w :

V → R such that Lw < 0 in V and infV w > 0. Then for every u ∈ C2(V ) such

that

L u ≥ 0 in V, lim sup
x→ξ

u(x) ≤ 0 ∀ξ ∈ ∂V,

we have u ≤ 0 in V .

In our case the existence of a function w follows from (H2) and from the smooth-

ness of the coefficients. Indeed, under these assumptions, we can choose two positive

real constants M and λ such that the function

(1.4) w(x) = w(x1, . . . , xN ) = M − eλx1

has the required properties.
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This paper is organized as follows. In Section 2 all the notions and results from

Potential Theory that we need are briefly recalled. In Section 3 we show that the

set of the solutions u of L u = 0 in Ω satisfies the axioms of the Doob Potential

Theory. In Section 4 we prove that the L -propagation set of x0 is a subset of the

smallest absorbent set containing x0. In this way we derive the Harnack inequality

for the non-negative solutions u of L u = 0. In Section 5 the propagation sets

of some meaningful operators are studied. In particular we focus on the following

operators: ∂2
x1

+x1∂x2
in R2 and ∂2

x1
+sin(x1)∂x2

+cos(x1)∂x3
in R3, and we show

that the geometry of the relevant Harnack inequality may appear either of parabolic

or elliptic-type, depending on the choice of Ω, even if both operators are parabolic.

2. Some recalls from Potential Theory

We recall some definitions and results of the Potential Theory that we need to

prove our Harnack inequality. For a detailed description of the general theory of

harmonic spaces we refer to [BLU07, chapter 6], [CC72] and to [Bau66].

2.1. Sheafs of functions and harmonic sheafs in Ω.

Let V be any open subset of Ω. We denote by R the set R ∪ {∞,−∞} and by R
V

the set of functions u : V −→ R. Moreover C(V,R) is the vector space of real

continuous functions defined on V .

A map

F : V 7→ F (V ) ⊆ R
V

is a sheaf of functions in Ω if

(i) V1, V2 ⊆ Ω, V1 ⊆ V2, u ∈ F (V2) =⇒ u|V1
∈ F (V1);

(ii) Vα ⊆ Ω ∀α ∈ A, u :
⋃

α∈A Vα −→ R, u|Vα
∈ F (Vα) =⇒ u ∈ F (

⋃
α∈A

Vα).

When F (V ) is a linear subspace of C(V,R) for every V ⊆ Ω, we say that the sheaf

of functions F on V is harmonic and we denote it H(Ω).

2.2. Regular open sets, harmonic measures and absorbent sets.

Let H be a harmonic sheaf on Ω. We say that an open set V ⊆ Ω is regular if:

(i) V ⊆ Ω is compact and ∂V 6= ∅;

(ii) for every continuous function ϕ : ∂V −→ R, there exists a unique function

in H(V ), that we denote by hV
ϕ , such that hV

ϕ (x) −−−→
x→ξ

ϕ(ξ) for every

ξ ∈ ∂V ;

(iii) if ϕ ≥ 0 then hV
ϕ ≥ 0.

From (ii) and (iii) it follows that, for every regular set V and for every x ∈ V , the

map

C(∂V ) ∋ ϕ 7−→ hV
ϕ (x) ∈ R
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is linear and positive. Thus, the Riesz representation theorem (see e.g. [Rud87]),

implies that, for every regular set V and for every x ∈ V , there exists a regular

Borel measure, that we denote by µV
x , supported in ∂V , such that

hV
ϕ (x) =

ˆ

∂V

ϕ(y) dµV
x (y) ∀ ϕ ∈ C(∂V ).

The measure µV
x is called the harmonic measure related to V and x.

Now, let A be a closed subset of Ω . We say that A is absorbent if it contains

the supports of all the harmonic measures related to its points. More precisely,

for every x ∈ A and every regular set V containing x, supp µV
x ⊆ A.

If x0 ∈ Ω, we define Ωx0
as the smallest absorbent set containing x0:

Ωx0
:=

⋂

A absorbent

A∋x0

A.

2.3. Superharmonic functions.

A function u : Ω −→]−∞,∞] is called superharmonic in Ω if

(i) u is lower semi-continuous;

(ii) for every regular set V , V ⊆ Ω, and for every ϕ ∈ C(∂V,R), ϕ ≤ u|∂Ω, it

follows u ≥ hV
ϕ in V ;

(iii) the set {x ∈ Ω | u(x) < ∞} is dense in Ω.

We denote by S (Ω) the family of the superharmonic functions on Ω.

By the maximum principle, we have that every function u ∈ C2(Ω) such that

L u ≤ 0 in Ω is superharmonic (see [BLU07, Proposition 7.2.5]).

2.4. Doob harmonic spaces and Harnack inequality.

We say that a harmonic sheafH(Ω) is a Doob harmonic space if the following axioms

are satisfied.

(A1) Positivity axiom:

For every x ∈ Ω, there exists an open set V ∋ z and a function u ∈ H(V )

such that u(x) > 0.

(A2) Doob convergence axiom:

Let (un)n∈N be a monotone increasing sequence in H(Ω) and let

u := supn∈N un. If the set {x ∈ Ω | u(x) < ∞} is dense in Ω, then u ∈ H(Ω).

(A3) Regularity axiom:

There is a basis of the euclidean topology of Ω formed by regular sets.

(A4) Separation axiom:

S (Ω) separates the points of Ω in this sense: for every y and z in Ω,
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y 6= z, there exist two non-negative functions u and v in S (Ω) such that

u(y)v(z) 6= u(z)v(y).

We close the section recalling that in this setting the abstract Harnack inequality

from the Parabolic Potential Theory holds [CC72, Proposition 6.1.5].

Theorem A. Let (Ω,H) be a Doob harmonic space, x0 ∈ Ω and let K be a compact

set contained in the interior of Ωx0
, the smallest absorbent set containing x0. Then

there exists a positive constant C = C(x0,K,Ω) such that

sup
K

u ≤ Cu(x0) ∀u ∈ H(Ω), u ≥ 0.

3. The harmonic space of the solutions of L u = 0

We show that the set of the solutions of the equation L u = 0 is a Doob harmonic

space in Ω. For every V ⊆ Ω we consider the harmonic sheaf

R
n ⊇ V 7−→ H(V )

where

H(V ) = {u ∈ C∞(V ) | L u = 0}

and L is the operator (1.1).

The positivity axiom (A1) is plainly verified. Indeed every constant function

belongs to H(Ω).

(A2) is a consequence of a weak Harnack inequality due to Bony (see [Bon69,

Theoreme 7.1]); see also [KL04, Proposition 7.4]).

(A3), i.e. the existence of a basis of the euclidean topology of Ω formed by regular

sets, can be proved as in [Bon69, Corollarie 5.2], see also [BLU07, Proposition 7.1.5].

We stress that the tools used in its proof are only the hypoellipticity, the non totally

degeneracy of the operator L and the classical Picone Maximum Principle.

Now we are left to verify the separation axiom (A4). As in our setting the

constant are superharmonic functions, we need to prove that

(3.1) ∀ y, z ∈ Ω, y 6= z, ∃ u ∈ S (Ω), u ≥ 0, such that u(y) 6= u(z).

Now, let y = (y1, . . . , yn) and z = (z1, . . . , zn) be two different points in Ω.

We observe that the function w(x) = w(x1, . . . , xN ) = M − eλx1 , as in (1.4), for

suitable real positive constants λ and M , is non-negative and Lw(x) < 0 for every

x ∈ Ω, hence w ∈ S (Ω).

If y1 6= z1, we can choose u(x) = w(x) to separate y and z and we are done.
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If y1 = z1, we set u(x) = |x − y|2 + w(x). Also in this case, for suitable λ and

M , u is non-negative, u ∈ C2(Ω) and L u(x) = L (|x − y|2) + L (w(x)) < 0 in Ω.

Moreover u(y)− u(z) = |z − y|2, so (3.1) is satisfied.

4. Propagation sets and Harnack inequality

Let X1(x), . . . , Xn(x), Y (x) be the vector fields defined in the following way:

Xi(x) =

n∑

j=1

aij(x)∂xj
, 1 ≤ i ≤ n,

Y (x) =

n∑

i=1

bi(x)∂xi
.

We recall that a L -propagation path is any absolutely continuous path γ :

[0, T ] −→ Ω such that

γ′(t) =
n∑

j=1

λj(t)Xj(γ(t)) + µ(t)Y (γ(t)) a.e. in [0, T ]

for suitable piecewise constant real functions λ1, . . . , λn, and µ with µ ≥ 0.

For a point x0 in Ω, we define the L -propagation set as the set of all points x

such that x and x0 can be connected by a propagation path, running from x0 to x:

P(x0,Ω) := {x ∈ Ω | ∃ γ : [0, T ] → Ω, γ L -propagation path, γ(0) = x0, γ(T ) = x}.

Proceeding as in [CMP15, Lemma 5.8], we prove now that the L -propagation

set of x0 is a subset of every absorbent set containing x0. This Lemma, based on

the maximum propagation principle, is a key lemma in order to get our Harnack

inequality so we prefer to give here its detailed proof.

Lemma 2. For every x0 in Ω, P(x0,Ω) ⊆ Ωx0
.

Proof. By contradiction, suppose x ∈ P(x0,Ω) and x /∈ Ωx0
. There exists an

absolutely continuous path γ connecting x0 and x:

γ : [0, T ] −→ Ω, γ(0) = x0, γ(T ) = x.

As Ωx0
is a subset closed in Ω and γ is continuous, there will be a time t1 such that

γ(t1) = x1 ∈ Ωx0
and γ(t) /∈ Ωx0

when t is in ]t1, T ].

Let’s take a regular open set V containing x1. There will be t2 ∈]t1, T ] such that

x2 = γ(t2) ∈ ∂V . From what we wrote before, x2 does not belong to Ωx0
.

Take now a neighborhood of x2, U such that U ∩ ∂V ⊆ Ω\Ωx0
and consider a

function ϕ defined on ∂V such that ϕ is strictly positive in U ∩∂V and 0 otherwise.
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hV
ϕ (x1) =

ˆ

∂V

ϕ(y) dµV
x1
(y) =

ˆ

U∩∂V

ϕ(ζ) dµV
x1
(ζ) = 0,

because x1 is in Ωx0
and supp µV

x1
⊆ Ωx0

for every regular set V . But hV
ϕ is nonneg-

ative and it would attain its minimum at x1. From Amano minimum propagation

principle [Ama79, Theorem 2], it would follow that

hV
ϕ (γ(t)) = 0 ∀ t ∈]t1, t2[.

In conclusion, we would have that

hV
ϕ (x) −−−−→

x→x2

ϕ(x2) > 0,

and

hV
ϕ (γ(t)) −−−→

t→t−
2

hV
ϕ (γ(t2)) = 0

that is a contraddiction. �

We are now ready to give the proofs of our main results.

Proof of Theorem 1. Let x0 in Ω and let K be a compact set contained in the

interior of P(x0,Ω). As Ωx0
is a closed subset of Ω, Lemma 2 implies that

P(x0,Ω) ⊆ Ωx0
. On the other hand, as we showed in Section 3, the set of the

solutions of the equation L u = 0 is a Doob harmonic space in Ω. Then, by Theo-

rem A, there exists a positive constant C = C(x0,K,Ω,L ) such that

sup
K

u ≤ Cu(x0)

for every non-negative solution u of L u = 0 in Ω. �

Proof of Corollary 2. We set x̃ := (x, xn+1), Ω̃ := Ω×] − 1, 1[, K̃ := K × [− 1
2 ,

1
2 ]

and ũ(x̃) := u(x) for every x̃ ∈ Ω̃. We observe that the L̃ -propagation set of

(x0, 0), P̃(x0,0)(Ω̃), equals Px0
(Ω)×] − 1, 1[. Then K ⊆ intPx0

(Ω) if and only if

K̃ ⊆ intP̃(x0,0)(Ω̃). By Theorem 1

sup
K̃

ũ ≤ C ũ(x0, 0)

and the conclusion follows immediately.

�

5. Examples

In this Section we give two examples of operators for which we give Harnack-

type inequalities that, to our knowledge, are new. In general, the main step in

the application of our Theorem 1 is the characterization of the propagation set
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P(x0,Ω) of the operator L . We recall that the Control Theory provides us with

several tools useful for this problem. We refer, for example, to the book [AS04,

Chapter 8] by Agrachev and Sachkov.

5.1. A Harnack inequality for the stationary Mumford operator.

We consider the operator L = ∂2
x1

+ sin(x1)∂x2
+ cos(x1)∂x3

in the set:

(5.1) Ω =]− a, a[×B(0, r) ⊆ R× R
2.

x1 ∈] − a, a[ where a > π, and (x2, x3) ∈ B(0, r), the euclidean ball centered at 0

with radius r > 0. This operator has been introduced by Mumford [Mum94] in the

study of computer vision problems. The relevant Harnack inequality of Theorem 1

takes the following form:

Theorem 3. Let Ω be the set introduced in (5.1), with a > π. For every compact

set K ⊂ Ω there exists a positive constant C = C(K,Ω,L ) such that

sup
K

u ≤ Cu(0),

for every non-negative solution u of

∂2
x1
u+ sin(x1)∂x2

u+ cos(x1)∂x3
u = 0 in Ω.

Proof. In view of Theorem 1, we need only to prove that in this case the propagation

set P(0,Ω) agrees with Ω. With this aim, we fix any point z = (z1, z2, z3) in Ω,

and we construct a L -propagation path steering 0 to z. Note that, in our case, the

vector fields defined in (1.2) are

X = ∂x1
and Y = sin(x1)∂x2

+ cos(x1)∂x3
.

We connect 0 and z by a path γ : [0, T ] → Ω such that γ′(t) = ±X(γ(t)) in

the first interval [0, t1], then γ′(t) = Y (γ(t)) in the second interval [t1, t2], and

γ′(t) = ±X(γ(t)) in the third interval [t2, T ], for t1, t2, T such that 0 ≤ t1 ≤ t2 ≤ T

chosen as follows.

We set t∗ = arg(z2, z3) ∈] − π, π] ⊂]− a, a[, and we choose t1 := |t∗|. If t∗ > 0,

the function γ(t) = (t, 0, 0) is a solution of γ′(t) = X , for t ∈ [0, t1], γ(0) = 0. If

t∗ < 0 we consider γ(t) = (−t, 0, 0). In both cases, we have that γ′(t) = ±X(γ(t)).

If t∗ = 0 we simply skip this step.

We next set t2 = t1 +
√
z22 + z23 , and we choose γ such that γ′(t) = Y (γ(t)) for

t1 < t < t2. Also in this case, if (z2, z3) = (0, 0), we skip this step. We conclude

the construction of γ by choosing s∗ = z1− t∗, T = t2+ |s∗| and following the same

method used in the first step. The path γ then writes as follows.
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γ(t) =





(±t, 0, 0) if 0 ≤ t ≤ t1,

(t∗, (t− t1) cos t
∗, (t− t1) sin t

∗) if t1 ≤ t ≤ t2,

(t∗ ± (t− t2), z2, z3) if t2 ≤ t ≤ T.

�

Remark 4. The above construction can be reproduced to translated cylinders

Ωy =]y1 − a, y1 + a[×B((y2, y3), r) ⊆ R× R
2,

for every y = (y1, y2, y3) ∈ R3. We find P((y1, y2, y3),Ωy) = Ωy.

We point out that, on the other hand, the geometry of the propagation set

P(0,Ω) changes completely as the width of the interval ]−a, a[ is smaller than 2π.

For instance, if we consider the set

Ω̃ =]− π/2, π/2[×B(0, r) ⊆ R× R
2,

we easily see that P(0, Ω̃) = Ω̃ ∩
{
x3 > 0

}
. This fact is in accordance with

the invariance of the operator L with respect to the following left translation

introduced in [BL12]. Denote x = (t, z), y = (s, w) ∈ R× C. then

x ◦ y := (t+ s, z + weit).

5.2. A Harnack inequality for a degenerate Ornstein Uhlenbeck operator.

We consider the operator L = ∂2
x1

+ x1∂x2
in the set

(5.2) Ω =]− a, a[×]− b, b[

for some positive a and b.

As in the case of Mumford operator, Theorem 1 gives an elliptic Harnack in-

equality.

Theorem 5. Let Ω be the set introduced in (5.2). For every compact set K ⊂ Ω

there exists a positive constant C = C(K,Ω,L ) such that

sup
K

u ≤ Cu(0),

for every non-negative solution u of

∂2
x1
u+ x1∂x2

u = 0 in Ω.
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Proof. We prove that, also in this case, the propagation set P(0,Ω) agrees with Ω.

The vector fields defined in (1.2) are

X = ∂x1
and Y = x1∂x2

.

We choose an integral curve γ such that γ′(t) = ±X(γ(t)) in some intervals. A

curve like that writes as γ(t) = (x̃1 ± t, x̃2). In particular, we will use the field X

to increase or decrease the first coordinate x1. In some other intervals we choose

γ′(t) = Y (γ(t)). Such a curve writes as γ(t) = (x̃1, x̃2 + x̃1t). In this case, we rely

on the sign of x̃1 to increase or decrease the second component x2. We prefer not

to give the details of the construction and to refer to the following figure.

x1

x2

γ(t1)

γ(t2)γ(t3)

γ(T )

±X

Y = x1∂x2
Y = x1∂x2

�

Remark 6. The above result fails as

Ω =]a1, a2[×]− b, b[⊆ R
2,

and a1 and a2 have the same sign. In particular, if a1 and a2 are both positive, and

we consider x0 =
(
a1+a2

2 , 0
)
, we have P(x0,Ω) = Ω ∩

{
x2 > 0

}
. On the contrary,

if a1 and a2 are both negative, we have P(x0,Ω) = Ω ∩
{
x2 < 0

}
.
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Applicata, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, IT-84084 Fis-

ciano (SA) - Italy

E-mail address: alessia.kogoj@gmail.com

Dipartimento di Scienze Fisiche, Informatiche e Matematiche - Università di Modena

e Reggio Emilia - via Campi 213/b, IT-41125 Modena - Italy

E-mail address: sergio.polidoro@unimore.it


	1. Introduction
	2. Some recalls from Potential Theory
	2.1. Sheafs of functions and harmonic sheafs in 
	2.2. Regular open sets, harmonic measures and absorbent sets
	2.3. Superharmonic functions
	2.4. Doob harmonic spaces and Harnack inequality

	3. The harmonic space of the solutions of Lu=0 
	4. Propagation sets and Harnack inequality
	5. Examples
	5.1. A Harnack inequality for the stationary Mumford operator
	5.2. A Harnack inequality for a degenerate Ornstein Uhlenbeck operator

	Acknowledgments
	References

