
Computers & Operations Research 71 (2016) 149–162
Contents lists available at ScienceDirect
Computers & Operations Research
http://d
0305-05

n Corr
Amendo

E-m
manuel
stuetzle
journal homepage: www.elsevier.com/locate/caor
A destroy and repair algorithm for the Bike sharing
Rebalancing Problem

Mauro Dell'Amico a, Manuel Iori a, Stefano Novellani a,b,n, Thomas Stützle c

a DISMI, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
b "Guglielmo Marconi" - DEI, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
c IRIDIA, Université Libre de Bruxelles (ULB), 50, Av. F. Roosevelt, CP 194/6 B-1050 Brussels, Belgium
a r t i c l e i n f o

Available online 22 January 2016

Keywords:
Bike sharing
Rebalancing
Destroy and repair
Speed-up techniques
Branch-and-cut
x.doi.org/10.1016/j.cor.2016.01.011
48/& 2016 Elsevier Ltd. All rights reserved.

esponding author at: DISMI, University of Mo
la 2, 42122 Reggio Emilia, Italy.
ail addresses: mauro.dellamico@unimore.it (M
.iori@unimore.it (M. Iori), stefano.novellani@u
@ulb.ac.be (T. Stützle).
a b s t r a c t

In this paper, we deal with the Bike sharing Rebalancing Problem (BRP), which is the problem of driving a
fleet of capacitated vehicles to redistribute bicycles among the stations of a bike sharing system. We
tackle the BRP with a destroy and repair metaheuristic algorithm, which makes use of a new effective
constructive heuristic and of several local search procedures. The computational effort required for the
neighborhood explorations is reduced by means of a set of techniques based on the properties of feasible
BRP solutions. In addition, the algorithm is adapted to solve the one-commodity Pickup and Delivery
Vehicle Routing Problem with maximum Duration (1-PDVRPD), which is the variant of the BRP in which
a maximum duration is imposed on each route.

Extensive computational results on instances from the literature and on newly-collected large-size
real-world instances are provided. Our destroy and repair algorithm compares very well with respect to
an exact branch-and-cut algorithm and a previous metaheuristic algorithm in the literature. It improves
several best-known solutions, providing high quality results on both problem variants.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Bike sharing systems are public or private systems designed to
increase the use of bicycles and decrease congestion, to solve the
last mile problem, and to provide a mobility service to the users
where other means of transportation are not available. These
systems were born in the 1960s in Amsterdam (see, e.g., DeMaio
[1]) and spread all over the world now, counting more than 700
operating systems and more than 200 systems planned, under
construction, or about to be implemented (see e.g., DeMaio and
Meddin [2]).

Bike sharing systems are composed of several bike stations
located in different sites around the city, and each station is
composed of a number of bike slots where bicycles can be col-
lected or returned. In a balanced situation, each bike station must
have a certain number of empty slots, to allow arrivals, and a
certain number of full slots, to allow departures.

Let us define the level of occupation of a station as the number
of bicycles present in that station, and the balanced level of
dena and Reggio Emilia, Via

. Dell'Amico),
nimore.it (S. Novellani),
occupation as the level of occupation that the system operator
desires in a station. After a certain amount of time from the
beginning of the service, the users will have moved the bicycles
among the stations of the system and the level of occupation will
have gone far from the balanced one. For example, the stations on
the top of a hill will be typically empty and the stations at the
bottom will be typically full. This situation creates inefficiency in
the system such that users cannot collect or return bicycles when
they need to. The system operators want the stations to be
brought back to their balanced levels of occupation to avoid the
inefficiency created by full and/or empty stations, so they perform
a redistribution of bicycles that is called rebalancing. The reba-
lancing is performed by capacitated vehicles and it is normally
required at the end of the day, when the system is closed or when
the use of the system can be considered negligible. In this case, the
rebalancing is called static. Some bike sharing operators may
require that the rebalancing is performed when the system is
open, incurring in a situation that is called dynamic rebalancing. In
this paper we study the static case.

The Bike sharing Rebalancing Problem (BRP) is a problem related
to the static rebalancing of a bike sharing system, that requires to
drive a fleet of homogeneous and capacitated vehicles to rebalance
the stations of a bike sharing system at minimum cost. In this
paper, we present a new constructive heuristic and a set of effi-
cient local searches that are included into a destroy and repair

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.01.011
http://dx.doi.org/10.1016/j.cor.2016.01.011
http://dx.doi.org/10.1016/j.cor.2016.01.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.01.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.01.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.01.011&domain=pdf
mailto:mauro.dellamico@unimore.it
mailto:manuel.iori@unimore.it
mailto:stefano.novellani@unimore.it
mailto:stuetzle@ulb.ac.be
http://dx.doi.org/10.1016/j.cor.2016.01.011
http://dx.doi.org/10.1016/j.cor.2016.01.011

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162150
metaheuristic algorithm for the BRP. This new algorithm provides
shorter solving times for the easiest instances and better upper
bounds for the hardest instances when compared to the branch-
and-cut algorithm developed by Dell'Amico et al. [3] and good
quality solutions for newly collected, large real-world instances.

Moreover, we adapted the metaheuristic algorithm to the
one-commodity Pickup and Delivery Vehicle Routing Problem with
maximum Duration (1-PDVRPD), a variation of the BRP where a
maximum duration constraint is imposed to each route. Instances
of the 1-PDVRPD from the literature have been solved and the best
known solutions have been strongly improved. To solve the
1-PDVRPD we have also adapted the branch-and-cut algorithm of
Dell'Amico et al. [3], by efficiently handling the maximum duration
limit as a set of constraints of exponential size. This method
applies to two-index formulations for general vehicle routing
problems, so we believe it is a further interesting contribution in
this field of research.

The paper is structured as follows. In Section 2, we formally
define the BRP and the 1-PDVRPD. Mathematical models are
proposed for both problems and a brief literature review is
reported. In Section 3, we describe some properties of the BRP that
allow us to speed up local searches. In Section 4, we present the
framework of the proposed destroy and repair algorithm for the
BRP and we describe its components. In Section 5, we describe the
adaptation of the destroy and repair and of the branch-and-cut
algorithms to the 1-PDVRPD. In Section 6, extensive computational
results on newly collected real instances and on literature
instances are presented. Section 7 concludes the work.
2. Problem description

The Bike sharing Rebalancing Problem (BRP) is modeled on a
complete digraph G¼ ðV ;AÞ, where V ¼ f0;1;…;ng is the set of
vertices including the depot (vertex 0) and the n stations (vertices
1;…;n), and A is the set of arcs between each pair of vertices. Let cij
be the non-negative cost associated with the arc ði; jÞAA. We
assume that the triangular inequality valid for the cost matrix. For
each vertex iAV a request qi is given, with q0 ¼ 0. Requests can be
either positive or negative. If a station has a positive request, we
call it a pickup station; if, instead, it has a negative request, we call
it a delivery station. The quantities picked up at pickup stations
can be used to respond to requests of delivery stations or can be
returned directly to the depot. Vehicles can leave the depot not
necessarily empty, if needed. The objective is to drive a fleet of m
identical vehicles of capacity Q available at the depot to respond to
requests and to minimize the total cost of the traversed arcs. As
commonly assumed in the related literature (see, e.g., Dell'Amico
et al. [3]), we impose that a station with request qi¼0 must be
visited, even if this implies that no bike has to be dropped off or
picked up there. This is imposed to allow the routine inspection of
bikes and stations. The case in which stations with null request
have to be skipped can be simply obtained by removing them in a
preprocessing phase.

2.1. Formulation for the BRP

In this section, we present a mixed integer linear programming
(MILP) formulation for the BRP. The starting point is Formulation F3
by Dell'Amico et al. [3] built on the multiple Traveling Salesman
Problem (m-TSP), in which at most m uncapacitated vehicles based
at a central depot have to visit a set of vertices, with the constraint
that each vertex is visited exactly once. By defining a binary
variable xij, taking value 1 if arc (i,j) is traveled by a vehicle, and
0 otherwise, the BRP can be modeled as (1)–(6).

min z¼
X
iAV

X
jAV

cijxij ð1Þ

X
iAV

xij ¼ 1 jAV⧹ 0f g ð2Þ

X
iAV

xji ¼ 1 jAV⧹ 0f g ð3Þ

X
jAV

x0jrm ð4Þ

X
iA S

X
jA S

xijr Sj j�max 1;
P

iA Sqi
�� ��

Q

� �� �
SDV⧹ 0f g; Sa∅ ð5Þ

xijA 0;1f g i; jAV : ð6Þ
Objective function (1) minimizes the traveling costs. Constraints
(2) and (3) impose that every vertex but the depot is visited once.
Constraints (4) ensure that at most m vehicles leave the depot. To
guarantee the feasibility of a solution with respect to the BRP, we
need to substitute the typical subtour elimination constraints by
the family of constraints (5) in the m-TSP formulation, so as to
ensure that requests are satisfied and vehicles capacities are not
exceeded. Constraints (5) are similar to the generalized subtour
elimination constraints for the CVRP. They state that, for each
subset S of vertices, the number of arcs with both tail and head in S
should not exceed the cardinality of S minus the minimum num-
ber of vehicles required to serve S. Following Hernández-Pérez and
Salazar-González [4], an estimation of the minimum number of
vehicles is simply obtained by computing the absolute value of the
sum of the requests, dividing it by the vehicle capacity and then
rounding up the result. This value can be zero when the sum of the
qi is null; in such a case, the value one is used instead, because at
least one vehicle is needed (notice that S does not contain the
depot) to impose the connectivity of the solution. Constraints (5)
are exponentially many, so the above formulation can be solved in
branch-and-cut (B&C) fashion, by invoking a separation procedure
to divide the violated ones from the non-violated ones, and then
adding the violated cuts to the model in an iterative way. For
details we refer to Dell'Amico et al. [3] and to Section 5.2 below.

2.2. A generalization of the BRP: the 1-PDVRPD

The one-commodity Pickup and Delivery Vehicle Routing Problem
with maximum Duration (1-PDVRPD) is a generalization of the BRP
in which a maximum duration constraint is imposed for the
routes. The problem was solved by Shi et al. [5], in which is
imposed a maximum distance D to each route, where the distance
is computed as the sum of the traveling costs. In this paper, we
solve a more general version of the 1-PDVRPD where the max-
imum distance D is considered as a maximum duration in time, T,
where a time tij of traveling the arc ði; jÞAA is introduced and it is
proportional to the cost between i and j, i.e., cij ¼ τtij, with τ a non-
negative parameter. Moreover, we consider a service time si in
each station that depends on the quantity to be picked up or
dropped off, imposing that si ¼ σ jqi j , with σ a non-negative
parameter. We solve the version of the 1-PDVRPD that takes into
account the traveling time tij, the service time si, and the max-
imum duration of a route T because it fits better with the BRP. The
1-PDVRPD proposed by Shi et. al [5] is a particular case of our
version, where τ¼ 1;σ ¼ 0, and T¼D.

For modeling the 1-PDVRPD as a MILP we need to express the
maximum duration constraint. To this aim, we define a path P as an
ordered sequence of vertices Pð0Þ; Pð1Þ;…; PðjP j Þ. We useR to identify
the set of routes, i.e., the set of paths P starting and ending at the depot,

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162 151
(Pð0Þ ¼ PðjP j Þ ¼ 0). We guarantee that each route PAR does not
exceed the maximum duration limit, by considering the traveling times
on the arcs and the service times on the visited stations, as follows:

XjP j �1

i ¼ 0

ðtPðiÞPðiþ1Þ þsPðiþ1ÞÞxPðiÞPðiþ1ÞrT PAR: ð7Þ

Note that constraints (7) are exponentially many, and, hence, as already
observed for (5), we need a separation procedure that divides violated
constraints from non-violated ones. This is discussed in Section
5.2 below.

2.3. Prior work

The BRP and the 1-PDVRPD belong to the class of Pickup and
Delivery Vehicle Routing Problems (PDVRP), and generalize the
Capacitated Vehicle Routing Problem (CVRP). Thus, they are both
strongly NP-hard problems.

According to the classification introduced by Berbeglia et al. [6]
and followed by Battarra et al. [7] the BRP is a Many-to-Many (M-
M) vehicle routing problem, where the origins and destinations of
the requests are multiple. The simplest M-M PDVRP is the one-
commodity Pickup and Delivery Traveling Salesman Problem (1-
PDTSP), which was introduced by Hernández-Pérez and Salazar-
González [8]. The 1-PDTSP aims at traveling a single capacitated
vehicle to meet the multiple requests of a single commodity and
minimize the costs. Hernández-Pérez and Salazar-González [4]
presented asymmetric and symmetric formulations for the 1-
PDTSP and solved the symmetric one by means of a B&C algo-
rithm (which was later improved by Hernández-Pérez and Salazar-
González [9]). Hernández-Pérez et al. [10,11] presented two simple
heuristics and a variable neighborhood descent. Other metaheur-
istic algorithms for the 1-PDTSP were proposed, lately, by Marti-
novic et al. [12] (iterated modified simulated annealing), Zhao
et al. [13] (genetic algorithm), Hosny and Mumford [14] (hybrid
variable neighborhood search and simulated annealing approach),
and Mladenović et al. [15] (variable neighborhood search).

The BRP is a generalization of the 1-PDTSP to the case of multiple
vehicles, and was formally introduced by Dell'Amico et al. [3]. They
proposed four formulations for the BRP and solved them by B&C. They
evaluated the algorithms on 65 real-world instances and 15 random
instances solving to optimality all instances with up to 51 vertices.

The multiple vehicle case with a maximum duration limit
imposed for every route was formally introduced by Shi et al. [5].
They proposed a three-index formulation for which they did not
report any computational evaluation. They also presented a
genetic algorithm and tested it on a set of randomly generated
symmetric instances derived from those proposed by Hernández-
Pérez and Salazar-González [10].

Many other papers deal with the balancing of bike sharing
systems considering different aspects. We report a relevant col-
lection of these papers by dividing them into static rebalancing
with split deliveries, rich static rebalancing, and dynamic reba-
lancing. The static rebalancing with split deliveries, i.e., the case
where customers can be visited more than once and their requests
split, is examined in Benchimol et al. [16]. They presented com-
plexity results, lower bounding techniques, and approximation
algorithms for the single vehicle case where the sum of all
requests is equal to zero. A computational evaluation of the
techniques was not given. Chemla et al. [17] also considered the
single vehicle case where split deliveries are allowed, but they
imposed a limit on the maximum number of times a vertex can be
visited. Stations with null requests can be used as buffers. The
authors presented a formulation and a tabu search algorithm, and
performed a large series of computational tests. Erdoğan et al. [18]
also solved the single vehicle problem with split deliveries by
allowing the use of the stations as storages. The authors solved the
problem by means of a B&C algorithm, proposed a constructive
heuristic, and presented good results on different sets of instances.

We refer to rich static rebalancing problems as those problems
where the static rebalancing aspect is considered in conjunction
with many additional features, such as transshipment, different
objectives, multiple depots, inventory policies, and possibly also
split deliveries. Raviv et al. [19] defined the static bicycle reposi-
tioning problem as the problem of minimizing the traveling costs of
a fleet of heterogeneous vehicles and the users' dissatisfaction that
is linked to the inventory level of each station. They presented two
MILP formulations allowing, respectively, limited and unlimited
split delivery and transshipment, and considering also a maximum
duration for each route. They also developed exact and heuristic
methods to solve the presented formulations. Papazek et al. [20]
solved another rich static problem defined as the balancing bicycle
sharing system problem, which intends to find the routes of an
heterogeneous fleet of vehicles to minimize the deviation from the
target level of request of each station. They also considered, as
secondary objectives, the duration of the routes and the number of
loading actions performed. The problem allows split deliveries and
transshipment and it is imposed that the vehicles return empty to
the depot. The authors proposed a greedy constructive heuristic
and some metaheuristic algorithms. Di Gaspero et al. [21] solved a
similar rich static rebalancing problem where split deliveries are
allowed but intermediate storages are not. The problem considers
multiple depots and multiple vehicles, and a maximum duration
time imposed on each vehicle. The aim is to find routes that
operate pickups and deliveries to bring the level of occupation in
each station as close as possible to the balanced one and that
minimize the total traveling time. The authors introduced two
different constraint programming models and proposed two
branching strategies. Then they included the constraint program-
ming models in a large neighborhood search approach obtaining
good computational results. Schuijbroek et al. [22] combined the
inventory policy and the routing optimization. The authors solved
the problem of minimizing the makespan of the routes respecting
a lower and a upper bound on the number of bikes required in
each station. The stations that do not need a visit can be used as a
buffer, the routes can be open (arbitrary routes start and end
points) and a limited number of transshipments is allowed. The
authors proposed a MILP formulation, a constraint programming
approach, and a cluster-first route-second heuristic.

A solution method for the dynamic rebalancing, where requests
can change during the rebalancing operations, was presented by
Contardo et al. [23]. The objective is to maximize the serviced
requests by using a set of vehicles. The authors presented a for-
mulation using discretized time and solved it heuristically with
Dantzig–Wolfe and Benders decompositions.
3. Properties of feasible paths for the BRP

In this section, we present some properties of feasible BRP
paths that allow us to speed up the computation of several pro-
cedures that are at the basis of our metaheuristic algorithm. These
procedures are formally defined in Section 4 and they are all based
on the following set of operators:

� Remove a vertex i from its current position in the solution.
� Insert a vertex i in a position.
� Move a vertex i from its position to another one (composition of

remove and insert).
� Swap two vertices i and j by moving i to the position of j and j to

the position of i (once again, composition of remove and insert).
� Merge two (partial) routes.

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162152
Our speed-up techniques build on the basic route feasibility
property presented in [10], and that we resume here briefly. We
recall that a path P is an ordered sequence of vertices
Pð0Þ; Pð1Þ;…; PðjP j Þ, while a route is a path that starts and ends at
the depot, i.e., Pð0Þ ¼ PðjP j Þ ¼ 0. Let us first compute the cumula-
tive request along a route by using the following recursion

lPðiÞðPÞ ¼
Xi

k ¼ 0

qPðkÞ for i¼ 0;1;…; jP j : ð8Þ

In other words, lPðiÞðPÞ gives the value of the load on the vehicle after
visiting vertex P(i) of route P, if the vehicle left the depot with no
load. Negative lPðiÞðPÞ values may still lead to feasible routes, because
the initial load of the vehicle is not restrained to be 0. In particular, a
route is feasible if the following inequality is satisfied (see [10]):

max
j P j �1

i ¼ 0
flPðiÞðPÞg� min

j P j �1

i ¼ 0
flPðiÞðPÞgrQ : ð9Þ

In the following we make use of a parameter ΔP, that we call the
amount of feasibility of P and set as

ΔP ¼Q� max
j P j �1

i ¼ 0
flPðiÞðPÞgþ min

j P j �1

i ¼ 0
flPðiÞðPÞg: ð10Þ

Intuitively, routes with a small ΔP value have a tight constraint on the
choice of the initial load. This parameter can be used to define some
sufficient conditions, called Δ-checks in the following, for quick fea-
sibility checks of the previously introduced neighborhood operators.

Property 1. If i ∉ P and jqi jrΔP , then vertex i can be feasibly
inserted in any position of route P.

Proof. Let P0 be the route obtained after the insertion of vertex i in
route P. By applying (9), P0 is feasible if

max
j P0 j �1

k ¼ 0
flP0 ðkÞðP0Þg� min

j P0 j �1

k ¼ 0
flP0 ðkÞðP0ÞgrQ : ð11Þ

To prove that (11) holds if the hypothesis is satisfied, let us con-
sider two cases:

� qiZ0. In this case, with respect to the route P, the insertion of vertex
i may increase or keep unchanged both the max and the min terms
in (11). The maximum difference between the two emerges when
the max increases by the maximum possible quantity, i.e., by qi, and
the min does not change. We can thus bound this difference as

max
j P0 j �1

k ¼ 0
flP0 ðkÞðP0Þg� min

j P0 j �1

k ¼ 0
flP0 ðkÞðP0Þgr max

j P j �1

k ¼ 0
flPðkÞðPÞgþqi

� �

� min
j P j �1

k ¼ 0
flPðkÞðPÞg ¼ max

j P j �1

k ¼ 0
flPðkÞðPÞgþqi� min

j P j �1

k ¼ 0
flPðkÞðPÞg

r max
j P j �1

k ¼ 0
flPðkÞðPÞgþΔP� min

j P j �1

k ¼ 0
flPðkÞðPÞg ¼ Q ;

where the last two steps follows, respectively, from the hypothesis
and from (10).

� qio0. In this case we consider instead that the maximum dif-
ference between the two terms in (11) is obtained when the
min term decreases by qi and the max remains unchanged, thus
we can state that

max
j P0 j �1

k ¼ 0
flP0 ðkÞðP0Þg� min

j P0 j �1

k ¼ 0
flP0 ðkÞðP0Þgr max

j P j �1

k ¼ 0
flPðkÞðPÞg

�
�

min
j P j �1

k ¼ 0
flPðkÞðPÞgþqi

�
¼ max

j P j �1

k ¼ 0
flPðkÞðPÞg� min

j P j �1

k ¼ 0
flPðkÞðPÞg�qi

r max
j P j �1

k ¼ 0
flPðkÞðPÞg� min

j P j �1

k ¼ 0
flPðkÞðPÞgþΔP ¼ Q ;

and the thesis is verified.□
Similar proofs, reported in Appendix A, lead to the following
results.

Property 2. Given a feasible route P:

(a) If iAP and jqi jrΔP , then vertex i can be feasibly removed from
route P.

(b) If iAP and jqi jrΔP , then vertex i can be feasibly moved in any
position along route P.

(c) If i; jAP and jqi�qj jrΔP , then the swap of vertices i and j is
feasible.
Moreover, given a pair of feasible routes P and R:

(d) If iAP; jAR, and jqi�qj jrminfΔP ;ΔRg, then the swap of ver-
tices i and j is feasible.

Proof. See Appendix A.□

When the quick Δ-checks are not enough to certify feasibility of
a move, an exact check must be performed. We consider more
elaborated data structures to reduce the computational complex-
ity of the exact check. In this sense, our contribution follows a well
established line of research on difficult combinatorial problems,
arising in areas such as vehicle routing with time windows and
scheduling with release and due dates (see, e.g., Ergun and Orlin
[24], Liao et al. [25], and Ibaraki et al. [26]).

We use the concept of load windows that express the feasible
intervals of load that can be carried on the vehicle before or after
visiting a vertex along a given route, by extending the basic result
in [10]. In particular, we use

FPðiÞðPÞ ¼ f
PðiÞðPÞ; f PðiÞðPÞ

h i
¼
	
lPðiÞðPÞ� min

i

j ¼ 0
flPðjÞðPÞg; lPðiÞðPÞþQ

� max
i

j ¼ 0
flPðjÞðPÞg

ð12Þ

to define the forward load window along route P, i.e., the feasible
interval for the load on the vehicle after leaving vertex P(i), and
supposing that P(i) is the last vertex of the route before returning
to the depot. The computation of (12) can be performed in linear
time by using a simple structure that keeps track of the minimum
and maximum values without recalculating them from scratch.
Note that the amount of feasibility of P can be quickly computed as
ΔP ¼ f Pðj P j �1ÞðPÞ� f

Pðj P j �1ÞðPÞ.
We similarly define the backward load window along route P, as

BPðiÞðPÞ ¼
h
bPðiÞðPÞ; bPðiÞðPÞ

i
. This load window gives the feasible

interval for the load on the vehicle before it visits vertex P(i), and
considering that P(i) is the first vertex in the route after the depot.
This can be computed by first using a recursion that gives the
cumulative load rPðiÞ in the reverse route starting from the depot and
visiting the vertices in the order PðjP j Þ; PðjP j �1Þ;…; PðiÞ. Formally

rPðiÞðPÞ ¼ �
Xi

k ¼ j P j
qPðkÞ for i¼ jP j ; jP j �1;…;0: ð13Þ

It is worth recalling that for a route P ending at the depot PðjP j Þ ¼ 0.
We thus compute, again in linear time, the backward load window as

BPðiÞðPÞ ¼ bPðiÞðPÞ; bPðiÞðPÞ
h i

¼
	
rPðiÞðPÞ� min

j P j

j ¼ i
frPðjÞðPÞg; rPðiÞðPÞ

þQ� max
j P j

j ¼ i
frPðjÞðPÞg

: ð14Þ

The forward and backward windows are used to construct the fol-
lowing property.

Property 3. Two disjoint and feasible routes P and R can be merged
in a feasible route P � R, where the last vertex of P before returning to

Alg
Sav
Loc
if z
z

en
rep
D
R
L
i

e
un

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162 153
the depot, PðjP j �1Þ, is followed by the first vertex of R after the
depot, Rð1Þ, if and only if

FPðj P j �1ÞðPÞ \ BRð1ÞðRÞa∅:

Proof. See Appendix A.

By applying similar reasonings, we obtain the following additional
results.

Property 4. Given two feasible routes P and R:

a) Removing the first vertex after the depot or the last vertex before
the depot from P is always feasible.

b) Removing a vertex P(i) from P is feasible if and only if
FPði�1ÞðPÞ \ BPðiþ1ÞðPÞa∅.

c) Let I be the single-vertex route formed by vertex i, i.e., ð0; i;0Þ. The
insertion of i into P after vertex P(p) is feasible if and only if the
two following conditions are satisfied: (1) i can be feasibly
inserted after the first part of P, i.e., FPðpÞðPÞ \ BiðIÞa∅; (2)

FiðPÞ \ BPðpþ1ÞðPÞa∅, where FiðPÞ ¼ max
n
f
PðpÞðPÞ; biðIÞ

oh
þ liðIÞ;

min
n
f PðpÞðPÞ; biðIÞ

o
þ liðIÞ

i
. For sake of clarity, we underline that

BiðIÞ ¼ ½0;Q�qi�, if qiZ0, and that BiðIÞ ¼ ½�qi;Q �, if qio0.
d) Let I¼ ð0; i;0Þ and J ¼ ð0; j;0Þ, and suppose iAP (let i¼ PðhÞ) and

jAR (let j¼ RðkÞ). The swap of i with j is feasible if and only if
the following conditions are satisfied for the two routes: (1)
FPðh�1ÞðPÞ \ BjðJÞa∅; (2) FjðPÞ \ BPðhþ1ÞðPÞa∅, where FjðPÞ ¼
max

n
f
Pðh�1ÞðPÞ;bjðJÞ

o
þ ljðJÞ;min

n
f Pðh�1ÞðPÞ; bjðJÞ

o
þ ljðJÞ

h i
; (3)

FRðk�1ÞðRÞ \ BiðIÞa∅; (4) FiðRÞ \ BRðkþ1ÞðRÞa∅, where

FiðRÞ ¼ max
n
f
Rðk�1ÞðRÞ; biðIÞ

o
þ liðIÞ;min

n
f Rðk�1ÞðRÞ; biðIÞ

o
þ liðIÞ

ih
.

We conclude this section by discussing the update of the load
windows. Let us suppose that a merging of two routes P and R has
been performed, in this order, and consider the intersection
between the forward load window of PðjP j �1Þ, and the backward
load window of Rð1Þ, that is: FPðj P j �1ÞðPÞ \ BRð1ÞðRÞ ¼
max

n
f
Pðj P j �1ÞðPÞ;bRð1ÞðRÞ

o
;min

n
f Pðj P j �1ÞðPÞ; bRð1ÞðRÞ

oi
¼ ϕ;ϕ
h ih

. It

is convenient to update the existing forward and backward load
windows, without recomputing them from scratch. To update the
forward load window for the vertices of route R we can compute:

FRðiÞðP � RÞ ¼ ϕþ lRðiÞðRÞ;ϕþ lRðiÞðRÞ
h i

; i¼ 1;…; jRj �1, while for the

vertices of route P the forward load window does not change. To
update the backward load windows for the vertices of route P we

can compute: BPðjÞðP � RÞ ¼ ϕþrPðjÞðPÞ;ϕþrPðjÞðPÞ
h i

; j¼ 1;…;

jP j �1, while for the vertices of route R the backward load win-
dow does not change.
4. Destroy and repair algorithm

The overall framework of the algorithm that we use to solve the
BRP, called DR_BRP, is reported in Algorithm 1. It mainly consists of
an iterated destroy and repair mechanism, enriched with local
search procedures. The principle of using solution destruction with
a subsequent solution re-construction or repair has been popu-
larized in recent years by Ropke and Pisinger [27], in the context of
large neighborhood search. This principle has been proposed, even
in more sophisticated ways with respect to our work, in a number
of different algorithms using names such as simulated annealing
(see, e.g., Jacobs and Brusco [28]), ruin-and-recreate (see, e.g.,
Schrimpf et al. [29]), large neighborhood search (see, e.g., Shaw
[30]), iterated greedy (see, e.g., Ruiz and Stützle [31]), iterative
constructive search (see, e.g., Richmond and Beasley [32]), or
iterative flattening (see, e.g., Cesta et al. [33]). We first construct a
feasible initial solution by using a greedy algorithm
(Savings&Losses, described in Section 4.1) and we refine it by using
a set of local search procedures (explained in Section 4.4). This
solution is then iteratively destroyed and repaired by using in
order DestroyProcedure and RepairProcedure (presented in Sections
4.2 and 4.3, respectively), and again improved by the local search
procedures, until a stopping criterion is reached. Note that our
algorithm works with routes that are feasible with respect to the
capacity constraint, but accepts solutions in which the number of
routes is larger than m. This number is implicitly minimized by
several of the adopted local search procedures.

Algorithm 1. DR_BRP.
orithm DR_BRP
ings&Losses -ðxn; znÞ
al searches ðxnÞ-ðxls; zlsÞ
lsoznthen
n’zls and xn’xls
d if
eat
estroyProcedure ðxlsÞ-ð ~xÞ
epairProcedure ð ~xÞ-ðx0Þ
ocal searches ðx0Þ-ðxls; zlsÞ
f zlsozn then
zn’zls and xn’xls
nd if
til Stopping criterion
urn xn and zn
ret

4.1. Constructive algorithm

The constructive algorithm that we developed starts from the
well-known Savings algorithm by Clarke and Wright [34], but
adapts it to the new problem at hand by introducing the concept
of loss of flexibility. We start by building n routes, each containing a
single vertex. We then iteratively select two routes and merge
them into a single one, until no more merging is possible.

To select the pair of routes to be merged, we take into account
all possible combinations. When considering the merging of
routes, say, P and R, we evaluate the feasibility of the resulting
route P � R by making use of Property 3. If feasible, then we
evaluate the saving obtained in the cost function, if any, as
SP�R ¼ c0;Rð1Þ þcPðj P j �1Þ;0�cPðj P j �1Þ;Rð1Þ. We also evaluate the loss of
flexibility induced by the merging, as the difference between the
amount of feasibility (as defined in Section 3) of the resulting
route, ΔP�R, and that of the two original routes, ΔP and ΔR, com-
puted as LP�R ¼ �ðΔPþΔR�2ΔP�RÞ. In practice, the more negative
is the value of LP�R the more the size of the resulting load window
would be consistently reduced with respect to the sizes of the
original windows, and so the resulting route would be harder to be
feasibly merged with other routes in the successive iterations. We
use an evaluation function that takes both terms into account, as

EP�R ¼ αSP�Rþð1�αÞLP�R; ð15Þ
where α is a parameter of the algorithm that takes values between
0 and 1. The feasible merging of two routes leading to the highest
value according to (15) is then selected. The value taken by α in
our computational experiments is discussed in Section 6.

We can note that only the backward load window Pð1Þ and the
forward load window of RðjRj �1Þ are needed to determine the fea-
sibility of merging the two routes. These can be computed efficiently
inside Savings&Losses as follows. Let us call FPðj P j �1ÞðPÞ\
BRð1ÞðRÞ ¼ ϕ;ϕ

h i
, then we can compute: FP�Rðj P�Rj �1ÞðP � RÞ ¼

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162154
ϕþ lRðj Rj �1ÞðRÞ;ϕþ lRðj Rj �1ÞðRÞ
h i

and BP�Rð1ÞðP � RÞ ¼ ϕþrPð1ÞðPÞ;
h

ϕþrPð1ÞðPÞ
i
. Moreover, rPð1ÞðPÞ ¼ � lRðj Rj �1ÞðRÞ and lP�RðjP � Rj �

1ÞðP � RÞ ¼ lRðj Rj �1ÞðRÞþ lPðj P j �1ÞðPÞ.

4.2. DestroyProcedure

To insert diversification into the metaheuristic algorithm, we
make use of a component called DestroyProcedure. Similarly to
Random Removal, presented by Ropke and Pisinger [27], Destroy-
Procedure randomly selects a number of vertices, one at a time,
independently one from the other and with uniform probability,
and removes them from the current solution. The number of
vertices to be removed is also selected randomly with a uniform
probability in an interval defined by two parameters π and δ; more
precisely: ½maxf3;π�δπg;πþδπ�. The values taken by the para-
meters π and δ were set after computational tests, as described in
Section 6. Each selected vertex is removed from its current route
by applying the remove operator introduced in Section 3. If the
selected vertex is the first one (right after the depot) or the last
one (right before the depot) of a route, its removal can be operated
without causing infeasibility on the remaining route because of
Property 4-(a). In all other cases, we check the feasibility of the
remaining route by checking Properties 2-(a) and 4-(b). If
the remaining route is feasible, we perform the removal of the
selected vertex; if it is infeasible, we perform the removal and
divide the remaining route into the two separate routes defined
by the removal (which are then feasible again because of Property
4-(b)).

4.3. RepairProcedure

After using the DestroyProcedure, we are left with a partial
solution where not every vertex is allocated to a route. To restore
feasibility, we apply two repair procedures that use the insert
operator to include the non-assigned vertices into existing or
newly formed routes. In details:

1. RepairInsertion: We evaluate the feasibility and the cost of
inserting each one of the non-assigned vertices in any position
in any route, plus the option of creating a new route containing
only the considered vertex. Among the feasible options, we
select the one having minimum cost, and then re-iterate with
the next non-assigned vertex until all of them are assigned. To
check the feasibility of the insertion we make use of Properties
1 and 4-(c) of Section 3.

2. Savings&Losses: We use the constructive algorithm of Section
4.1, by considering the existing routes in the partial solution and
each non-assigned vertex as if it were a single-vertex route. The
merging of the routes follows the previously described process.

According to preliminary computational tests, we set RepairPro-
cedure to execute at each iteration of the algorithm either
RepairInsertion or Savings&Losses, by alternating them.

4.4. Local search procedures

To improve the solution obtained by the constructive algorithm
and/or after a destroy and repair phase, we implemented several
local search procedures based on the operators introduced in
Section 3. Apart from the Δ-checks, the load windows, and the fast
update techniques previously described, we also make use of a
simple but effective idea called Don't look bit, that we describe
here for the insert operator. If we determine that the insertion of a
vertex into a route is infeasible, then we keep track, in a matrix, of
this infeasibility as long as the route is not modified by other
procedures, so as to avoid useless feasibility re-evaluations. A
slight variation applies to the swap neighborhood. We now give
the details of the local search procedures that we implemented:

1. Move: Select a vertex, remove it from its current position and
insert it into another position, either in the same route or in a
different one, maintaining the sequence. Feasibility is quickly
checked by means of Properties 1, 2-(a), 2-(b), 4-(b), and 4-(c). If
the selected vertex is the only vertex in its route, then the route
is deleted.

2. Or-opt(κ): Select at most κ consecutive vertices in a route,
remove them from their current position and insert them into
another position, either in the same route or in a different one.
Let us call P the route from which we remove the κ vertices and
R the one in which we insert them. The feasibility of the
removal is checked by merging the two remaining subroutes of
P as discussed in Property 3. The feasibility of the insertion is
instead performed in OðκÞ, by first evaluating the κ forward and
backward load windows of the removed vertices as if they were
a single route, and then merging themwith the first part of R by
using again Property 3. If this is feasible, we update the load
windows and check the feasibility of merging this new subroute
with the second part of R. The value κ is a parameter of the
algorithm to be defined after computational tests, as described
in Section 6.

3. Swap(1,1): Select two vertices in the same route or in different
routes and swap them. The feasibility is checked by applying
Properties 2-(c), 2-(d), and 4-(d).

4. Swap(2,2): It extends the previous local search by selecting two
pairs of consecutive vertices and swapping them, maintaining
the same order of the vertices in each pair. The process for
checking feasibility is similar to the one described for Or-opt(κ),
but simpler because only pairs of vertices are moved in this case
and no longer lists of κ vertices.

5. Swap(1,1,1): Select three vertices, say, v1, v2, and v3, belonging to
either, one, two, or three routes, and swap them in the two
possible ways (v1 with v2, v2 with v3, v3 with v1, or v1 with v3,
v3 with v2, v2 with v1). Use Properties 2-(c), 2-(d), and 4-(d) for
feasibility check.

6. Cross: Select two routes, P and R, and two positions along the
routes. Cut each route right after the selected position, and
merge the first part of P with the second part of R, and the first
part of R with the second part of P. Use Property 3 for feasibility
check. Note that a particular case arises when a position is at the
very beginning of its route and the other position is at the very
end of the other route, when Cross consequently attempts a
merging of the two routes into a single one.

7. Cross(3): It extends the previous local search, by selecting three
routes, and attempting the two possible ways of cutting and
merging them.

The number of routes in the solution is possibly decreased by
the procedures Move, Or-opt(κ), Cross, and Cross(3). Every proce-
dure is run in best improvement fashion, which is computationally
preferable to first improvement on our instances, in this sense we
defined and computationally tested the parameter ι, that can take
value 1 for the best improvement and 0 for the first improvement.
The procedures are inserted in a Variable Neighborhood Descent
(VND) type framework (see, e.g., Hansen and Mladenović [35]),
where they are invoked one after the other according to a given
order. Our implementation is a VND type framework because we
do not go back to the previous local search procedure if an
improvement is found, but we continue invoking local searches
following the given order until the last one, then we reiterate from
the first local search and follow the given order until no
improvement in the current solution is provided by all local search

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162 155
procedures. This method is similar to the piped VND (see, e.g., den
Besten and Stützle [36]), where the procedure stops at the end of
the last local search procedure. According to the preliminary
computational tests, the order of the local searches was set to 1, 3,
5, 4, 6, 2, and 7.

In terms of complexity, we first note that a straightforward
implementation of Move would require Oðn3Þ time, because the
number of possible moves is Oðn2Þ (considering each vertex to be
removed and each insertion position), and evaluating each move
would require O(n) for computing feasibility of the at most two
routes involved by the move. With the use of the load windows we
reduce this complexity to Oðn2Þ, because feasibility is checked in
Oð1Þ. Similar reasonings apply to the next local searches, leading to
the following complexities: Oðn2Þ for Or-opt(κ) considering a fixed
value of κ; Oðn2Þ for Swap(1,1) and Swap(2,2); Oðn3Þ for Swap(1,1,1);
Oðn2Þ for Cross; and Oðn3Þ for Cross(3).
5. Adaptation to the 1-PDVRPD

In this section, we describe how we adapted the algorithm
presented in the previous section and the B&C by Dell'Amico et al.
[3], both originally developed for the BRP, to include the maximum
route duration constraint so as to solve the 1-PDVRPD.

5.1. Destroy and repair for the 1-PDVRPD

To solve the 1-PDVRPD, we must perform additional tests when
checking the feasibility of a solution, as the feasibility for the BRP
is a necessary but not sufficient condition for the feasibility of the
1-PDVRPD. Thus, after checking that a solution is feasible for the
BRP, we evaluate that the sum of the travel and service times of
each route does not exceed the maximum duration.

The inclusion of this additional check can be performed with-
out increasing the complexity when using the data structures as
above. This inclusion is easy for every component of our algorithm
so we do not describe it in details. We mention here the fact that
the remove operator is always feasible because of the triangular
inequality that we assumed to be valid for the cost matrix (and
thus the time matrix) whilst the insert operator needs an addi-
tional check on the times of the routes. For local searches based on
the merge operator, it is convenient to keep track of the cumula-
tive time (service and travel) from the depot to any vertex in a
route. This is useful, for example, when performing a move of Cross
that attempts to merge the first part of a route P with the second
part of a route R. The total duration of the resulting route can be
obtained by summing the total time of the first part of P, the time
to travel along the connecting arc, and the total time of the second
part of R (obtained by subtracting the total time of the first part of
R from the total time of R).

5.2. Branch-and-cut for the 1-PDVRPD

To solve to optimality model (1)–(7) for the 1-PDVRPD, a B&C
algorithm is required because of the exponential number of con-
straints. The B&C algorithm that we used is directly derived from the
one presented in Dell'Amico et al. [3]. We developed some new valid
inequalities for the different features of the problem and several
separation procedures have been added to the mentioned B&C
algorithm. For the implementation we used the B&C framework of
CPLEX 12.2, that solves at every node of an enumeration tree the
linear relaxation of an ILP model, and then invokes user-developed
separation procedures to possibly add cuts. We adopted strong
branching as branching rule.

We first present some valid inequalities that we use to
strengthen constraints (7), so as to improve the convergence of the
algorithm to the optimum, and then we discuss the separation
procedures that we implemented.

5.2.1. Valid inequalities
For the first family of inequalities we need some further

notation. Let P be a path. We recall that PðiÞ denotes the index of
the i-th vertex of path P, for i¼ 0;1;…; jP j , with Pð0Þ ¼ 0. A path is
called infeasible with respect to the maximum duration ifPj P j �1

i ¼ 0 ðtPðiÞPðiþ1Þ þsPðiþ1ÞÞ4T . As in our case the triangular
inequality holds for both the cost and time matrix, we strengthen
this feasibility check by adding to its left hand side the value
tPðj P j Þ;0, which gives a lower bound on the time needed to return to
the depot.

Let P be the family of all infeasible paths, the following infea-
sible path constraints are thus valid inequalities for the BRP:

Xj P j �1

i ¼ 0

xPðiÞ;Pðiþ1Þr jP j �2 PAP: ð16Þ

Inequality (16) simply states that, if path P is infeasible then not all
the arcs connecting two consecutive vertices of P may belong to a
solution. A way to enforce it is to consider the related tournament
constraints, by taking into account also the arcs connecting non-
consecutive vertices of P. Indeed, any arc ðPðiÞ; PðjÞÞ with ja iþ1 is
incompatible with arcs ðPðiÞ; Pðiþ1ÞÞ and ðPðj�1Þ; PðjÞÞ, because of,
respectively, out-degree and in-degree constraints. Hence, we can
add the corresponding variable, xPðiÞ;PðjÞ to the left-hand side of (16),
without affecting the right-hand side value. This process can be
repeated for all arcs connecting two non-consecutive vertices in
the path, with the exception of those arcs leaving the depot,
because up to m of them may belong to a feasible solution. We
thus obtain the following:

x0;Pð1Þ þ
Xj P j �1

i ¼ 1

Xj P j
j ¼ iþ1

xPðiÞ;PðjÞr jP j �2 PAP: ð17Þ

Inequalities (16) and (17) enforce the maximum route duration
constraints, but are computationally very weak. To strengthen
them in some favored cases, we take advantage of a new type of
constraint, similar to the well-known capacity cut constraint,
which we call time-packing constraint.

To express the time-packing constraint family of inequalities
we need to introduce a lower bound on the time needed to reach a
vertex and serve it. Let us define lbiðV Þ ¼minjAV :j qj þqi j rQ

ftjigþsi; iAV . Thus we can add to the model the following
inequality (18), which computes a bound on the number of vehi-
cles needed to serve the customers in S while respecting the
maximum time constraint. Note that lb0ðSÞ ¼minjA Sftj0g is the
lower bound on the time needed to return to the depot. If the
summation of all the lower bounds is greater than the maximum
time T, then more than one route is needed to serve the subset S.

X
iA S

X
jAV⧹S

xijZ

P
iAS

lbiðVÞþ lb0ðSÞ

T

2
666

3
777 SDV⧹ 0f g; Sa∅; S\ 0f g ¼∅:

ð18Þ

5.2.2. Separation procedures
The aim of this subsection is to present the procedures that we

use to determine if the valid inequalities that we proposed are
violated by a given possibly fractional solution x.

To separate constraints (18), we first build a supporting graph
G ¼ ðV ;AÞ, where the set of vertices is V ¼ V [fnþ1g; fnþ1g is a
dummy node, and the set of arcs is A ¼ A0 [A″. We have
A0 ¼ ði; jÞAA : xij40, and a capacity xij is assigned to every arc
ði; jÞAA0; moreover A″ ¼ ðnþ1; iÞ : iAV⧹f0g. With each arc ðnþ1; iÞ
AA″ is associated a capacity equal to lbiðVÞ=T . We then compute

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162156
the max flow on G, using nþ1 as a source and 0 as a sink. The
constraint (18) corresponding to the set S induced by the min-cut
is then checked, and, if violated, it is added to the model.

The tournament constraints (17) are separated exactly by
generating all possible paths starting from the depot and using a
depth-first strategy. We initialize path P with Pð0Þ ¼ 0, then select
the outgoing arc having the largest value of x, and extend the path
to include the head of the selected arc. Every time we add a vertex
to the path, we check if it is infeasible. If so, then we add the cut,
otherwise we continue extending the path. The path extension
continues as long as the sum of the involved xij is large enough to
possibly lead to a violated cut, i.e., as long as it is strictly greater
than the current cardinality of P subtracted by 2. When this con-
dition is not satisfied anymore, then we backtrack to the previous
vertex. Anytime we backtrack, we continue the depth-first search
by selecting the next arc with positive value of x, if any, and then
extend the path consequently. In our implementation, whenever
we find a violated cut of type (17) for a certain path P, then we also
add the corresponding constraint (7), and then we terminate the
separation procedure.

The separation procedures are invoked at every node of the
enumeration tree in the order in which we described them, to
separate (18), (17), and (7). On the basis of computational evidence
on the instances that we tested, we stop the separation process as
soon as we find a violated cut, if any.
Table 2
Parameters used for computational tests.

Parameter Value Meaning and use Section

α 0.7335 Balances the evaluation function components 4.1

π 4 Used to define the interval for the number of
vertices to destroy

4.2

δ 0.6582 Used to define the interval for the number of
vertices to destroy

4.2

ι 1 Specifies if local searches use best improvement
or first improvement

4.4

κ 35 Maximum limit for consecutive vertices to be

selected in Or-opt (κ)
4.4
6. Computational results

In this section, we present the computational results for the
metaheuristic and the B&C algorithms that we implemented to
solve the BRP and the 1-PDVRPD. To evaluate the quality of the
metaheuristic algorithm when solving the BRP, we used the
instances by Dell'Amico et al. [3] and, replicating their method, we
collected some new larger instances that are available online [37].
The new instances use real data of bike sharing systems of the
following cities: Brisbane, Milano, Lille, Toulouse, Sevilla, Valencia,
Bruxelles, Lyon, Barcelona, and London. Some characteristics of the
new instances are reported in Table 1, where we depict the name
of the city, the country in which the bike sharing system is located,
and the number of vertices of each instance. We then present the
minimal, average, and maximum value, and the standard deviation
of the requests and of the transportation costs. To evaluate the
performance of our algorithms on the 1-PDVRPD we used the
instances proposed by Shi et al. [5].

According to the number of vertices jV j , we divided both the
BRP and the 1-PDVRPD instances into three sets: small-size
instances for jV jr50, medium-size instances for 50o jV jo100,
and large-size instances for jV jZ100.

We determined the parameter setting by tuning them with the
irace package [38], which automatically configures optimization
Table 1
New BRP instances.

City Country jV j minfqig avgfqig max fqi

Brisbane Australia 150 �15 1.27 17
Milano Italy 184 �18 0.88 17
Lille France 200 �20 �0.42 16
Toulouse France 240 �13 �1.49 12
Sevilla Spain 258 �20 �1.56 10
Valencia Spain 276 �20 �1.50 14
Bruxelles Belgium 304 �13 �0.18 16
Lyon France 336 �20 �0.70 17
Barcelona Spain 410 �17 �2.56 19
London U.K. 564 �28 �0.58 29
algorithms by finding the most appropriate settings on a given set
of instances. We used the default irace Package setting using a
maximum number of 1000 algorithms runs during the tuning. The
stopping criterion for the algorithm runs is set to 10, 600, and
1800 CPU seconds for small-size, medium-size, and large-size
instances, respectively. We decided to run the irace Package on a
modified set of instances, derived by the three small-size Dublin
instances, all the 21 medium-size instances, and the three large-
size Minneapolis instances. We generated the modified instances
by perturbing the distances cij choosing new values randomly in
½0:9 cij;1:1 cij�, for all ði; jÞAA (made sure that the triangular
inequality is respected), and by perturbing the request qi of 10% of
the vertices choosing the values randomly in ½maxfqi�2; �Qg;
minfqiþ2;Qg�; iAV⧹f0g. Both BRP and 1-PDVRPD instances have
been tested with the obtained set of parameters, which is pre-
sented in Table 2. In the same table one can find the parameters
used for testing the instances. We recall that α and δ can take real
values in the interval ½0;1�;π can take an integer value in the
interval ½3;15�; ι can take value 0 for first improvement and 1 for
best improvement, and κ can take an integer value in the interval
½3; jV j �. All the tests reported in the following have been per-
formed on a Intel Core i3-2100 with 3.10 GHZ by using randomly
generated seed values.

6.1. Small-size instances

To evaluate the DR_BRP algorithm on the set of small-size instan-
ces we ran it for ten seconds taking note of the time when it found the
best solution. Results are reported in Table 3, where the instances are
depicted by the name of city, the number of vertices, and the vehicle
capacity. The table also reports the value of the optimal solution (zopt)
obtained by the B&C presented in Dell'Amico et al. [3] and the time
needed to the B&C to run to completion (t). The last five columns refer
to algorithm DR_BRP and report the average solution value (zavg)
obtained by running the algorithm ten times for a ten seconds time
limit, the percentage gap between the optimal and the average solu-
tion value (%gapavg ¼ 100 � ðzavg�zoptÞ=zopt), the minimal solution
value among the ten trials (zmin), the percentage gap between the
minimal solution value and the optimal one (%gapmin ¼ 100�
g devfqig minfcijg avgfcijg maxfcijg devfcijg

5.91 2 3769.07 13,959 2129.98
8.40 6 3313.63 8126 1422.46
6.72 163 7450.82 18,877 4655.73
6.16 6 3943.35 12,459 1904.32
6.89 2 4652.58 13,510 2305.15
7.64 134 4241.34 13,413 1892.71
8.24 211 5844.93 19,032 2726.70
7.85 18 4817.44 47,657 3571.38
9.84 2 4699.91 13,671 2229.90
9.91 2 5833.37 19,412 3100.69

Table 3
Results on small-size instances.

Instance B&C DR_BRP (10 s)

City jV j Q zopt t zavg %gapavg zmin %gapmin t_b

Bari 13 30 14,600 0.02 14,600.0 0.00 14,600 0.00 0.00
Bari 13 20 15,700 0.02 15,700.0 0.00 15,700 0.00 0.00
Bari 13 10 20,600 0.03 20,600.0 0.00 20,600 0.00 0.00
Reggio Emilia 14 30 16,900 0.02 16,900.0 0.00 16,900 0.00 0.00
Reggio Emilia 14 20 23,200 0.03 23,200.0 0.00 23,200 0.00 0.00
Reggio Emilia 14 10 32,500 0.05 32,500.0 0.00 32,500 0.00 0.01
Bergamo 15 30 12,600 0.03 12,600.0 0.00 12,600 0.00 0.01
Bergamo 15 20 12,700 0.00 12,700.0 0.00 12,700 0.00 0.01
Bergamo 15 12 13,500 0.11 13,500.0 0.00 13,500 0.00 0.00
Parma 15 30 29,000 0.02 29,000.0 0.00 29,000 0.00 0.00
Parma 15 20 29,000 0.02 29,000.0 0.00 29,000 0.00 0.00
Parma 15 10 32,500 0.05 32,500.0 0.00 32,500 0.00 0.00
Treviso 18 30 29,259 0.05 29,259.0 0.00 29,259 0.00 0.04
Treviso 18 20 29,259 0.03 29,259.0 0.00 29,259 0.00 0.04
Treviso 18 10 31,443 0.09 31,443.0 0.00 31,443 0.00 0.08
La Spezia 20 30 20,746 0.03 20,746.0 0.00 20,746 0.00 0.03
La Spezia 20 20 20,746 0.03 20,746.0 0.00 20,746 0.00 0.03
La Spezia 20 10 22,811 0.09 22,811.0 0.00 22,811 0.00 0.12
Buenos Aires 21 30 76,999 0.37 76,999.0 0.00 76,999 0.00 0.03
Buenos Aires 21 20 91,619 3.58 91,619.2 0.00 91,619 0.00 4.20
Ottawa 21 30 16,202 0.02 16,202.0 0.00 16,202 0.00 0.00
Ottawa 21 20 16,202 0.02 16,202.0 0.00 16,202 0.00 0.00
Ottawa 21 10 17,576 0.11 17,576.0 0.00 17,576 0.00 0.02
San Antonio 23 30 22,982 0.08 22,982.0 0.00 22,982 0.00 0.00
San Antonio 23 20 24,007 0.09 24,007.0 0.00 24,007 0.00 0.05
San Antonio 23 10 40,149 1.06 40,149.0 0.00 40,149 0.00 0.37
Brescia 27 30 30,300 0.06 30,300.0 0.00 30,300 0.00 0.07
Brescia 27 20 31,100 0.20 31,100.0 0.00 31,100 0.00 0.09
Brescia 27 11 35,200 1.37 35,200.0 0.00 35,200 0.00 0.39
Roma 28 30 61,900 0.84 61,900.0 0.00 61,900 0.00 0.36
Roma 28 20 66,600 1.72 66,670.0 0.11 66,600 0.00 3.46
Roma 28 18 68,300 0.58 68,300.0 0.00 68,300 0.00 0.00
Madison 28 30 29,246 0.02 29,246.0 0.00 29,246 0.00 0.04
Madison 28 20 29,839 0.05 29,839.0 0.00 29,839 0.00 0.04
Madison 28 10 33,848 0.53 33,848.0 0.00 33,848 0.00 0.20
Guadalajara 41 30 57,476 0.22 57,476.0 0.00 57,476 0.00 2.14
Guadalajara 41 20 59,493 0.34 59,493.0 0.00 59,493 0.00 1.48
Guadalajara 41 11 64,981 1.79 64,981.0 0.00 64,981 0.00 2.41
Dublin 45 30 33,548 6.05 33,595.4 0.14 33,548 0.00 2.29
Dublin 45 20 39,786 76.72 39,817.2 0.08 39,786 0.00 3.73
Dublin 45 11 54,392 610.80 55,000.6 1.12 54,392 0.00 5.28

Avg. 17.25 0.04 0.00 0.66

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162 157
ðzmin�zoptÞ=zopt), and the average time needed to obtain the best
solution by the metaheuristic algorithm (t_b).

One can notice that DR_BRP finds the optimal solution in all ten
trials for 37 out of 41 instances in times that are competitive with
the ones needed by the B&C algorithm, and obtains the optimal
solution at least once for the remaining four instances of the set.
The average gap of 0.04% from the optimal solution within an
average time of 0.66 s is extremely promising.

6.2. Medium-size instances

The computational results for the medium-size instances of the
BRP are reported in Table 4. Some information on the B&C algorithm
by Dell'Amico et al. [3] is reported, such as the best lower and upper
bounds, the percentage gap between them (gap¼ 100� ðUB�LBÞ=UB),
and the time needed to get these values in a time limit set to one hour.
Then we present zavg, the average solution obtained by running the
algorithm ten times for ten minutes, and the percentage gaps between
zavg and the lower and upper bounds from the B&C, %gapLB ¼ 100 �
ðzavg�LBÞ=LB and %gapUB ¼ 100 � ðzavg� UBÞ=UB, respectively. In
Table 4 are also presented the minimal values zmin obtained by the
algorithm on the ten trials and the gaps between zmin and the bounds
of the B&C computed in the same form as for zavg. We also show the
average time needed to obtain the best solution with a time limit set
to 600 s in t_b.

One can notice that DR_BRP can procure the optimal solution
for six instances out of eight for which an optimal solution was
known. It is worth noticing the improvement on the upper bound
obtained for the instances Ciudad de Mexico (90,30) and Ciudad
de Mexico (90,20), where DR_BRP improves the B&C solution on
average by 17.49% and 18.72%, respectively, and in the best case by
18.08% and 18.98%, respectively.

We can see that on average the metaheuristic algorithm finds
solutions 2.68% above the lower bound obtained by the B&C
algorithm and improves the upper bound by 2.81%. The best
solution cost is only 2.28% above the lower bound and improves
the upper bound by 3.17%.

6.3. Large-size instances

In Table 5, we report the results for the large-size BRP instan-
ces. The tests have been performed similarly to those for the
medium-size instances making use of the same parameter values,
but with a time limit of 1800 s. The columns depicted in Table 5

Table 4
Results on medium-size instances.

Instance B&C DR_BRP (10 min)

Avg Min

City jV j Q LB UB %gap t zavg %gapLB %gapUB t_b zmin %gapLB %gapUB

Denver 51 30 51,583 51,583 0.00 0.67 51,583.0 0.00 0.00 0.48 51,583.0 0.00 0.00
Denver 51 20 53,465 53,465 0.00 25.33 53,465.0 0.00 0.00 24.68 53,465.0 0.00 0.00
Denver 51 10 67,459 67,459 0.00 231.52 67,459.0 0.00 0.00 102.99 67,459.0 0.00 0.00
Rio de J. 55 30 122,547 122,547 0.00 65.57 122,582.1 0.03 0.03 198.66 122,547.0 0.00 0.00
Rio de J. 55 20 155,446 156,140 0.44 3600.00 155,992.7 0.35 �0.09 304.13 155,517.0 0.05 �0.40
Rio de J. 55 10 253,690 259,049 2.07 3600.00 257,412.5 1.47 �0.63 241.12 257,147.0 1.36 �0.73
Boston 59 30 65,669 65,669 0.00 28.14 65,669.0 0.00 0.00 16.16 65,669.0 0.00 0.00
Boston 59 20 71,879 71,879 0.00 473.84 72,057.2 0.25 0.25 178.16 71,916.0 0.05 0.05
Boston 59 16 74,790 75,065 0.37 3600.00 75,318.8 0.71 0.34 280.50 75,085.0 0.39 0.03
Torino 75 30 47,634 47,634 0.00 13.79 47,634.0 0.00 0.00 246.44 47,634.0 0.00 0.00
Torino 75 20 50,204 50,204 0.00 859.69 51,026.0 1.64 1.64 251.83 50,438.0 0.47 0.47
Torino 75 10 58,814 64,797 9.23 3600.00 62,031.6 5.47 �4.27 303.85 61,717.0 4.94 �4.75
Toronto 80 30 40,794 41,549 1.82 3600.00 41,783.5 2.43 0.56 201.49 41,390.0 1.46 �0.38
Toronto 80 20 42,621 47,898 11.02 3600.00 46,876.6 9.98 �2.13 269.37 46,631.0 9.41 �2.65
Toronto 80 12 54,238 60,763 10.74 3600.00 58,878.7 8.56 �3.10 321.39 58,539.0 7.93 �3.66
Miami 82 30 152,229 156,104 2.48 3600.00 154,344.7 1.39 �1.13 335.05 154,038.0 1.19 �1.32
Miami 82 20 209,379 229,237 8.66 3600.00 215,167.1 2.76 �6.14 265.13 214,250.0 2.33 �6.54
Miami 82 10 390,536 415,762 6.07 3600.00 402,746.8 3.13 �3.13 300.28 397,921.0 1.89 �4.29
C. de Mex. 90 30 67,894 88,227 23.05 3600.00 72,797.5 7.22 �17.49 213.91 72,279.0 6.46 �18.08
C. de Mex. 90 20 88,952 116,418 23.59 3600.00 94,621.6 6.37 �18.72 254.22 94,319.0 6.03 �18.98
C. de Mex. 90 17 99,714 109,573 9.00 3600.00 104,213.7 4.51 �4.89 359.59 103,658.0 3.96 �5.40

Avg. 5.17 2309.45 2.68 �2.81 222.35 2.28 �3.17

Table 5
Results on large-size instances.

Instance B&C (60 min) DR_BRP (30 min)

Avg Min

City jV j Q LB UB %gap zavg %gapLB %gapUB t_b zmin %gapLB %gapUB

Minneapolis 116 30 136,148 137,843 1.23 139,874.3 2.74 1.47 745.28 138,467.0 1.70 0.45
Minneapolis 116 20 157,736 186,449 15.40 166,797.0 5.74 �10.54 1003.72 166,150.0 5.33 �10.89
Minneapolis 116 10 246,133 298,886 17.65 264,335.2 7.40 �11.56 946.37 262,936.0 6.83 �12.03
Brisbane 150 30 108,275 158,043 31.49 115,949.2 7.09 �26.63 742.81 115,120.0 6.32 �27.16
Brisbane 150 20 132,419 196,739 32.69 146,930.0 10.96 �25.32 957.83 146,313.0 10.49 �25.63
Brisbane 150 17 147,236 234,210 37.14 160,385.6 8.93 �31.52 966.44 160,015.0 8.68 �31.68
Milano 184 30 145,245 227,983 36.29 168,931.2 16.31 �25.90 871.18 167,493.0 15.32 �26.53
Milano 184 20 187,175 295,994 36.76 219,558.6 17.30 �25.82 823.76 218,249.0 16.60 �26.27
Milano 184 18 203,716 299,630 32.01 236,394.9 16.04 �21.10 1048.32 234,423.0 15.07 �21.76
Lille 200 30 164,149 231,244 29.01 178,133.5 8.52 �22.97 666.67 176,976.0 7.81 �23.47
Lille 200 20 191,630 440,350 56.48 215,007.8 12.20 �51.17 280.09 213,090.0 11.20 �51.61
Toulouse 240 30 166,653 404,792 58.83 190,146.8 14.10 �53.03 1147.86 188,995.0 13.41 �53.31
Toulouse 240 20 190,739 427,959 55.43 231,062.0 21.14 �46.01 1398.52 228,674.0 19.89 �46.57
Toulouse 240 13 256,036 461,125 44.48 308,982.7 20.68 �32.99 868.98 307,874.0 20.25 �33.23
Sevilla 258 30 194,805 461,011 57.74 227,911.7 16.99 �50.56 898.40 225,076.0 15.54 �51.18
Sevilla 258 20 240,210 516,734 53.51 281,492.2 17.19 �45.52 1054.31 279,990.0 16.56 �45.82
Valencia 276 30 245,979 673,479 63.48 292,262.6 18.82 �56.60 789.54 287,854.0 17.02 �57.26
Valencia 276 20 302,368 698,436 56.71 370,057.4 22.39 �47.02 1064.40 367,201.0 21.44 �47.43
Bruxelles 304 30 255,259 502,920 49.24 315,487.7 23.60 �37.27 851.97 311,097.0 21.88 �38.14
Bruxelles 304 20 301,100 580,594 48.14 379,141.4 25.92 �34.70 835.66 376,387.0 25.00 �35.17
Bruxelles 304 16 348,303 626,721 44.42 426,992.4 22.59 �31.87 1038.33 424,432.0 21.86 �32.28
Lyon 336 30 300,950 580,437 48.15 364,083.4 20.98 �37.27 879.61 360,009.0 19.62 �37.98
Lyon 336 20 356,787 668,971 46.67 437,588.1 22.65 �34.59 1136.03 433,959.0 21.63 �35.13
Barcelona 410 30 311,774 983,627 68.30 545,633.1 75.01 �44.53 458.27 543,929.0 74.46 �44.70
Barcelona 410 20 449,060 1,088,850 58.76 774,818.4 72.54 �28.84 1538.57 771,507.0 71.80 �29.14
Barcelona 410 19 429,327 1,089,070 60.58 805,513.2 87.62 �26.04 1411.27 800,622.0 86.48 �26.49
London 564 30 385,748 1,304,850 70.44 705,232.0 82.82 �45.95 1572.97 699,571.0 81.35 �46.39
London 564 29 363,299 1,339,890 72.89 725,468.0 99.69 �45.86 1447.33 718,026.0 97.64 �46.41

Avg. 45.85 27.78 �33.92 980.16 26.83 �34.40

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162158
are the same used in Table 4, but we disregard the column
reporting the times of the B&C algorithm because it always
reached the time limit of one hour.
One can notice that the B&C algorithm is not giving good
bounds for the large-size instances. On the other hand we can
comment that in most of the cases DR_BRP can get heuristic

Table 6
Evaluation of local search components.

City jV j Q %gap1 %gap2 %gap3 %gap4 %gap5 %gap6 %gap7 %gapall

Rio de Janeiro 55 30 0.03 �0.36 �0.01 �0.02 �0.02 0.00 �0.01 �18.52
Rio de Janeiro 55 20 0.00 �0.15 0.02 �0.04 0.00 �0.10 0.00 �14.91
Rio de Janeiro 55 10 �0.03 �0.17 0.03 �0.07 �0.06 �0.04 �0.01 �9.00
Boston 59 30 0.00 �0.07 0.00 0.00 0.00 0.00 0.00 �18.44
Boston 59 20 �0.03 �0.07 �0.03 0.03 0.02 �0.03 0.00 �20.57
Boston 59 16 �0.08 �1.79 �0.04 �0.36 �0.20 �0.03 �0.13 �34.54
Torino 75 30 0.00 �0.42 �0.02 0.00 0.00 �0.01 �0.01 �16.91
Torino 75 20 �0.66 �1.01 �0.21 �0.13 0.24 �0.20 0.09 �21.04
Torino 75 10 �0.23 �0.59 �0.13 �0.09 0.09 �0.44 0.04 �15.94
Toronto 80 30 0.15 �1.32 0.07 �0.08 �0.14 �0.33 0.05 �34.11
Toronto 80 20 0.49 �1.89 0.39 0.17 0.41 �0.12 0.05 �34.98
Toronto 80 12 �0.33 �1.92 �0.50 �0.40 �0.15 �1.00 �0.43 �26.58
Miami 82 30 0.05 �0.09 0.00 0.04 �0.06 �0.14 0.05 �2.57
Miami 82 20 �0.11 �0.28 �0.17 �0.18 �0.40 �0.22 �0.18 �7.56
Miami 82 10 0.07 0.28 0.18 �0.09 �0.30 0.34 0.26 �10.62
Ciudad de Mexico 90 30 0.12 �1.59 �0.09 0.09 0.10 �0.32 0.06 �23.27
Ciudad de Mexico 90 20 0.06 �0.83 0.07 �0.05 �0.03 �0.24 �0.07 �13.01
Ciudad de Mexico 90 17 �0.20 �1.11 �0.16 �0.09 �0.09 �0.33 �0.01 �20.19
Minneapolis 116 30 �0.13 �1.46 �0.06 0.03 0.14 �0.31 0.23 �17.24
Minneapolis 116 20 �0.40 �0.73 �0.10 �0.13 0.01 �0.35 �0.13 �11.63
Minneapolis 116 10 0.14 �0.71 �0.12 0.13 0.02 �0.30 0.10 �9.40
Brisbane 150 30 0.34 �1.11 0.29 0.19 0.07 0.04 0.03 �11.52
Brisbane 150 20 0.20 �0.68 �0.14 �0.07 �0.12 �0.04 �0.09 �9.04
Brisbane 150 17 0.02 �0.68 �0.15 �0.10 �0.24 �0.06 �0.19 �6.95

Avg. �0.02 �0.78 �0.04 �0.05 �0.03 �0.18 �0.01 �17.02

Table 7
Results on small-size instances for the 1-PDVRPD.

Instance B&C SZG DR_BRP

Name jV j Q zopt zSZG t zavg zmin %gapavg %gapmin %gapSZGavg %gapSZGmin
t_b

n20q10A 20 10 5001 5515.4 0.65 5001.0 5001.0 0.00 0.00 �9.33 �9.33 0.10
n30q10A 30 10 6503 6906.0 0.92 6512.8 6503.0 0.15 0.00 �5.69 �5.84 1.91
n40q10A 40 10 7407 7476.4 1.14 7474.8 7407.0 0.92 0.00 �0.02 �0.93 5.60
n50q10A 50 10 7283 9263.5 1.52 7301.9 7283.0 0.26 0.00 �21.18 �21.38 4.43

Avg. 1.06 0.33 0.00 �9.05 �9.37 3.01

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162 159
solutions whose value is closer to the lower bound than to the
upper bound (which is improved by a 33.92%, on average).

6.4. Local search procedures evaluation

In this subsection we furnish with an insight on the contribu-
tion of the local search procedures with respect to the complete
DR_BRP algorithm. We produced eight versions of our algorithm,
by removing one of the seven local search procedures at a time
and, then, all of them. Each version was run ten times on the
medium-size instances, but disregarding the Denver instances
because they are too easy and thus not interesting for this study,
and on some large-size instances. In Table 6 we report for each
evaluated instance the percentage gap, %gapðxÞ, between the
average solution value obtained by the complete DR_BRP algo-
rithm and the average solution value reached without the local
search procedure ðxÞ. The index of the local search procedure in
Table 6 is the one already used in Section 4.4 (e.g., %gap1 gives the
percentage gap between DR_BRP and DR_BRP without Move). In
the last column we report the average gap for the DR_BRP without
any of the local search procedures. By looking at the average
values, reported in the last line of the table, one can notice that Or-
opt(κ) (index 2) and Cross (index 6) have a clear impact on the
overall algorithm leading to an improvement in almost each of the
considered instances, and that their removal worsens the average
solution value by 0.78% and 0.18%, respectively. For the other
operators this is less clear, but the negative overall value gives an
indication that these operators can be useful. In conclusion, one
can see that the importance of the local search procedures is
crucial with respect to the complete algorithm. This importance is
easy to detect when evaluating the average gap between the
solution value of DR_BRP and DR_BRP without local search
operators (%gapall), that indicates a 17.02% deterioration of the
solution value.

6.5. 1-PDVRPD instances

The DR_BRP algorithm developed for the BRP has been slightly
modified as discussed in Section 5.1 to include the maximum duration
constraint typical of the 1-PDVRPD, and has been tested to solve the 1-
PDVRPD instances available in the literature (taken from Shi et al. [5]).

We reproduced the experiments according to what we did for the
BRP instances. In Table 7 we present the results that we obtained on
the small-size instances, i.e., those having at most 50 vertices. We ran
DR_BRP ten times for ten seconds and set the parameters to the same
values used to solve the BRP instances. The metaheuristic by Shi et al.
[5] (SZG in the following) was executed on a slower PC running at
1.60 GHz CPU. In Table 7, we report the name of the instance, the
number of vertices, and the vehicle capacity. We then include the
value of the optimal solution (zopt), obtained thanks to the newly

Table 8
Results on medium-size and large-size instances for the 1-PDVRPD.

Instance SZG DR_BRP

Name jV j Q zSZG t zavg zmin %gapSZGavg %gapSZGmin
t_b

n60q10A 60 10 9931.6 2.01 8941.1 8939.0 �9.97 �9.99 140.87
n100q10A 100 10 14,379.3 14.85 12,476.9 12,317.0 �13.23 �14.34 855.75
n200q10A 200 10 23,331.7 47.00 19,619.5 19,341.0 �15.91 �17.10 1181.46
n300q10A 300 10 29,805.3 100.25 25,092.3 24,763.0 �15.81 �16.92 808.87
n400q10A 400 10 34,574.4 156.47 34,209.0 33.951.0 �1.06 �1.80 1237.71
n500q10A 500 10 39,872.5 240.06 33,706.5 33,108.0 �15.46 �16.97 1203.76

Avg. 93.44 �11.91 �12.85 904.74

Table 9
Comparison with the SZG algorithm with proportionate time limits.

Name jV j Q zavg t_b zSZG %gapSZGavg zmin %gapmin

n20q10A 20 10 5001.0 0.10 5515.4 �10.29 5001.0 0.00
n30q10A 30 10 6547.1 0.20 6906.0 �5.48 6503.0 0.67
n40q10A 40 10 7619.3 0.32 7476.4 1.88 7407.0 2.79
n50q10A 50 10 7478.9 0.54 9263.5 �23.86 7283.0 2.62
n60q10A 60 10 9445.1 0.58 9931.6 �5.15 8939.0 5.36
n100q10A 100 10 12,946.6 0.37 14,379.3 �11.07 12,317.0 4.86
n200q10A 200 10 20,423.4 12.89 23,331.7 �14.24 19,341.0 5.30
n300q10A 300 10 26,069.2 43.60 29,805.3 �14.33 24,763.0 5.01
n400q10A 400 10 35,588.0 49.53 34,574.4 2.85 33,764.0 5.13
n500q10A 500 10 34,553.6 121.306 39,872.5 �15.39 32,890.0 4.81

Avg. 22.94 �9.51 3.66

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162160
developed B&C algorithm of Section 5.2. In the columns dedicated to
the SZG algorithm, we report the best average solution value (zSZG) it
produced and the computational time it required to run to completion
(t). In the columns for the DR_BRP we show the average and the
minimum values of the ten trials of our metaheuristic algorithm (zavg
and zmin, respectively), their gaps with respect to the optimal solution
value (%gapavg and %gapmin), their gaps with respect to zSZG (com-
puted as %gapSZGavg ¼ 100 � ðzavg�zSZGÞ=zSZG and %gapSZGmin ¼ 100�
ðzmin�zSZGÞ=zSZG), and the average time needed to obtain the best
solution for each trial (t_b). One can see that with our metaheuristic
algorithmwe can solve all the small-size instances to optimality for at
least one trial (and for all trials on instance n20q10A), within an
average time of about 3 s. Moreover, we notice that DR_BRP improves
the solutions found by SZG by more than 9% on average, with a rea-
sonable computational effort.

In Table 8, we depict the results of our algorithm on all the
medium-size and large-size instances. The DR_BRP algorithm run ten
times on each instance by using the same parameters adopted for the
BRP instances. It was allowed 10min on Instance n60q10A (the only
medium-size instance according to our classification) and 30min on
the other instances. The B&Cwas not run because too computationally
expensive. Table 8 presents the same columns of Table 7, with the
exception of those referring to zopt and to the related gaps. One can
notice that our algorithm is able to improve every solution found by
SZG, obtaining in around 15min an average improvement of
about 12%.

Finally, we solved the 1-PDVRPD instances by setting as time limits
the same times required by the SZG algorithm to run to completion.
The PC onwhich we performed our tests is faster compared to the one
used by Shi et al. [5] (3.10 GHz vs 1.60 GHz). Hence, to perform a fair
set of tests we multiplied the SZG times by 1.60/3.10 and used the
resulting values as termination conditions for DR_BRP. In details, in
Table 9 we show the average solution obtained on the ten trials within
the time limit computed as previously explained (zavg), and the aver-
age time needed to find the best solution (t_b). Thenwe recall the best
average solution of Shi et al. [5] (zSZG) and the gap between zavg and
zSZG (%gapSZGavg ¼ 100 � ðzavg�zSZGÞ=zavg). Moreover we replicate the
minimal solution obtained by our algorithm (zmin) and the gap
between zavg and zmin (%gapmin ¼ 100 � ðzavg�zminÞ=zavg). With the
limited time limits, our algorithm still improves upon the SZG algo-
rithm, leading to better average solution values eight times out of ten,
and obtaining an average improvement slightly higher than 9.5%.
7. Conclusions

In this paper, we solved the Bike sharing Rebalancing Problem
proposing an effective metaheuristic algorithm in which are
implemented a new constructive heuristic and a set of local
searches made efficient by new speed-up techniques. A related
problem where a maximum duration constraint is considered, the
one-commodity Pickup and Delivery Vehicle Routing Problem
with maximum Duration, has also been tackled by adapting the
developed metaheuristic and an existing branch-and-cut algo-
rithm. The branch-and-cut algorithm considers in an innovative
and efficient way the duration constraint, by including inequalities
and separation procedures that can be applied to general VRP
problems with maximum duration constraints. We evaluated our
algorithms on newly collected real-world and literature instances
for both problem variants. We strongly improved the solutions
reported in the literature getting new optima and new best known
solutions in effective computational times.
Acknowledgments

Manuel Iori is partially supported by CAPES/Brazil under Grant
PVE no. A007/2013. Thomas Stützle acknowledges support from
the Belgian F.R.S.-FNRS, of which he is a senior research associate,
and the COMEX project within the Interuniversity Attraction Poles
Programme of the Belgian Science Policy Office.

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162 161
Appendix A
Proof of Property 2. Let us consider each statement one at a time:
a) Let P0 be the route obtained by removing vertex i from P. Route

P0 is feasible if

max
j P0 j �1

k ¼ 0
flP0 ðkÞðP0Þg� min

j P0 j �1

k ¼ 0
flP0 ðkÞðP0ÞgrQ : ðA:1Þ

To prove that this is always satisfied, let us consider two cases:
� qiZ0. With respect to the original route P, the removal of the

vertex may either reduce or keep unchanged both the max
and min terms in (A.1). The maximum difference between the
two terms arises when the max remains unchanged and the
min decreases by the largest possible quantity, i.e., by qi. We
can thus state that:

max
j P0 j �1

k ¼ 0
flP0 ðkÞðP0Þg� min

j P0 j �1

k ¼ 0
flP0 ðkÞðP0Þgr max

j P j �1

k ¼ 0
flPðkÞðPÞg

�
�

min
j P j �1

k ¼ 0
flPðkÞðPÞg�qi

�
¼ max

j P j �1

k ¼ 0
flPðkÞðPÞg� min

j P j �1

k ¼ 0
flPðkÞðPÞg

þqir max
j P j �1

k ¼ 0
flPðkÞðPÞg� min

j P j �1

k ¼ 0
flPðkÞðPÞgþΔP ¼ Q ;

where the last two steps follow, respectively, from the
hypothesis and from Eq. (10).

� qio0. In this case we consider instead that the largest dif-
ference between the two terms in (A.1) is attained when the
max increases by �qi and the min remains unchanged, thus:

max
j P0 j �1

k ¼ 0
flP0 ðkÞðP0Þg� min

j P0 j �1

k ¼ 0
flP0 ðkÞðP0Þgr max

j P j �1

k ¼ 0
flPðkÞðPÞg�qi

� �

� min
j P j �1

k ¼ 0
flPðkÞðPÞg ¼ max

j P j �1

k ¼ 0
flPðkÞðPÞg� min

j P j �1

k ¼ 0
flPðkÞðPÞg

�qir max
j P j �1

k ¼ 0
flPðkÞðPÞg� min

j P j �1

k ¼ 0
flPðkÞðPÞgþΔP ¼ Q :

b) Directly form Property 1 and Property 2.a.
c) Let P0 be the route obtained by swapping vertices i and j in P.

First suppose that i precedes j in P. Then the proof follows the
footsteps of that of point (a), by considering two cases, qiZqj
and qioqj, and showing that (A.1) is always satisfied when the
hypothesis holds. The same applies when j precedes i.

d) Let P0 and R0 be the routes obtained from, respectively, P and R,
after the swap of i with j. Suppose without loss of generality
that ΔPrΔR, and let us concentrate on P. Similarly to the proof
of point (a), we consider two cases, qiZqj and qioqj. Then
one can check that Eq. (A.1) is satisfied on both cases, when
the hypothesis holds, by applying a similar consideration to
the one above on the largest difference between the max and
min values attained in the equation. Note that the fact that the
swap is feasible does not imply that the single removal or
insertion of a vertex is feasible, i.e., jqi j and/or jqj j could be
greater than ΔP. The same reasoning applies to route R and
that concludes the proof.□

Proof of Property 3. We are given two disjoint and feasible routes
P and R, to be merged in the order P � R. We recall that, by using
(12), the last forward load window of P can be expressed as

FPðj P j �1ÞðPÞ ¼
	
lPðj P j �1ÞðPÞ� min

j P j �1

i ¼ 0
flPðiÞðPÞg; lPðj P j �1ÞðPÞ

þQ� max
j P j �1

i ¼ 0
flPðiÞðPÞg

: ðA:2Þ

Now notice that the first backward load window of route R can be
expressed as the difference between the last forward load window
of the route and the cumulated request along the route, that is

BRð1ÞðRÞ ¼ FRðj Rj �1ÞðRÞ� lRðj Rj �1ÞðRÞ: ðA:3Þ
The extreme values of FRðj Rj �1ÞðRÞ can be expressed again by using
(12), obtaining

FRðj Rj �1ÞðRÞ ¼
	
lRðj Rj �1ÞðRÞ� min

j Rj �1

i ¼ 0
flRðiÞðRÞg; lRðj Rj �1ÞðRÞ

þQ� max
j Rj �1

i ¼ 0
flRðiÞðRÞg

: ðA:4Þ

Thus combining (A.3) and (A.4) we get

BRð1ÞðRÞ ¼
	
� min

j Rj �1

i ¼ 0
flRðiÞðRÞg;Q� max

j Rj �1

i ¼ 0
flRðiÞðRÞg

: ðA:5Þ

Let us define, for the sake of simplicity, FPðj P j �1ÞðPÞ ¼ F ¼ f ; f
h i

and

BRð1ÞðRÞ ¼ B¼ b; b
h i

. Their intersection is given by

F \ B¼ max
n
f ; b

o
;min

n
f ; b

oh i
:

We first show the “if” part of the thesis, that is, if the intersection
of the two load windows is not empty, then the combined route is
feasible. The two load windows can be basically seen as two
intervals, thus their intersection is not empty if

max
n
f ; b

o
rmin

n
f ; b

o
: ðA:6Þ

There are four cases. If max
n
f ; b

o
¼ f and min

n
f ; b

o
¼ f , then

(A.6) is satisfied because P is feasible for hypothesis. The same

holds when the max and min values are attained by b and b,
respectively, because of the feasibility of R. Let us now concentrate

on the case where max
n
f ; b

o
¼ f and min

n
f ; b

o
¼ b.

For this case (A.6) summarizes to f rb, that using (A.2) and
(A.5) corresponds to

lPðj P j �1ÞðPÞ� min
j P j �1

i ¼ 0
flPðiÞðPÞgrQ� max

j Rj �1

i ¼ 0
flRðiÞðRÞg;

which can be rewritten as

max
j Rj �1

i ¼ 0
flRðiÞðRÞþ lPðj P j �1ÞðPÞg� min

j P j �1

i ¼ 0
flPðiÞðPÞgrQ : ðA:7Þ

Route P � R is feasible if the following condition is satisfied:

max
j P�Rj �1

i ¼ 0
flP�RðiÞðP � RÞg� min

j P�Rj �1

i ¼ 0
flP�RðiÞðP � RÞgrQ : ðA:8Þ

To prove this, first notice that we can rewrite

max
j P�Rj �1

i ¼ 0
flP�RðiÞðP � RÞg ¼max max

j P j �1

i ¼ 0
flPðiÞðPÞg;

�

max
j Rj �1

i ¼ 0
flRðiÞðRÞþ lPðj P j �1ÞðPÞg

�
; ðA:9Þ

min
j P�Rj �1

i ¼ 0
flP�RðiÞðP � RÞg ¼min

�
min
j P j �1

i ¼ 0
flPðiÞðPÞg;

min
j Rj �1

i ¼ 0
flPðiÞðRÞþ lPðj P j �1ÞðPÞg

�
: ðA:10Þ

Because f Zb, we have that lPðj P j �1ÞðPÞþQ�maxj P j �1
i ¼ 0 flPðiÞðPÞgZ

Q�maxj Rj �1
i ¼ 0 flRðiÞðRÞg, and thus

max
j Rj �1

i ¼ 0
flRðiÞðRÞþ lPðj P j �1ÞðPÞgZ max

j P j �1

i ¼ 0
flPðiÞðPÞg;

which combined with (A.9) gives

max
j P�Rj �1

i ¼ 0
flP�RðiÞðP � RÞg ¼ max

j Rj �1

i ¼ 0
flRðiÞðRÞþ lPðj P j �1ÞðPÞg: ðA:11Þ

M. Dell'Amico et al. / Computers & Operations Research 71 (2016) 149–162162
Similarly, from f Zb, it follows lPðj P j �1ÞðPÞ�minj P j �1
i ¼ 0 flPðiÞðPÞgZ

�minj Rj �1
i ¼ 0 flRðiÞðRÞg, and hence

min
j P j �1

i ¼ 0
flPðiÞðPÞgr min

j Rj �1

i ¼ 0
flRðiÞðRÞþ lPðj P j �1ÞðPÞg;

which combined with (A.10) gives us that

min
j P�Rj �1

i ¼ 0
flP�RðiÞðP � RÞg ¼ min

j P j �1

i ¼ 0
flPðiÞðPÞg: ðA:12Þ

By including (A.11) and (A.12) into (A.7) we can thus conclude

that (A.8) is satisfied. The remaining case, max
n
f ; b

o
¼ b and

min
n
f ; b

o
¼ f , is specular to the one just discussed, and this

concludes the first part of the proof.
The “only if” part is proved similarly, noticing that F \ B¼∅

means that max
n
f ; b

o
4min

n
f ; b

o
. Once again we have four

cases, f 4 f and b4b, which are impossible, and f 4b and b4 f ,

which are specular. We concentrate on the case f 4b, and use the

consequent facts that f Zb and f Zb. By applying similar steps to
the ones in the “if” part we can show that

max
j P�Rj �1

i ¼ 0
flP�RðiÞðP � RÞg� min

j P�Rj �1

i ¼ 0
flP�RðiÞðP � RÞg4Q ;

and thus P � R is infeasible.□
References

[1] DeMaio P. Bike sharing: history, impacts, model of provision and future. J
Public Transp 2009;10:41–56.

[2] DeMaio P, Meddin R. Bike-sharing world map. [Online]. Available: 〈http://bike-
sharing.blogspot.it/〉; 2014.

[3] Dell'Amico M, Hadjicostantinou E, Iori M, Novellani S. The bike sharing
rebalancing problem: mathematical formulations and benchmark instances.
Omega 2014;45:7–19.

[4] Hernández-Pérez H, Salazar-González J-J. A branch-and-cut algorithm for a
traveling salesman problem with pickup and delivery. Discret Appl Math
2004;145:126–39.

[5] Shi X, Zhao F, Gong Y. Genetic algorithm for the one-commodity pickup-and-
delivery vehicle routing problem. In: IEEE international conference on intel-
ligent computing and intelligent systems, vol. 1, 2009. p. 175–9.

[6] Berbeglia G, Cordeau J-F, Gribkovskaia I, Laporte G. Static pickup and delivery
problems: a classification scheme and survey. TOP 2007;15:1–31.

[7] Battarra M, Cordeau J-F, Iori M. Pickup and delivery problems for goods
transportation. In: Toth P, Vigo D, editors. Vehicle routing: problems, methods,
and applications, 2nd ed. SIAM, Monographs on discrete mathematics and
applications; 2014, pp 161–192.

[8] Hernández-Pérez H, Salazar-González J-J. The one-commodity pickup-and-
delivery travelling salesman problem. Lecture notes in computer science, vol.
2570/2003, Berlin; Springer; 2003. p. 89–104.

[9] Hernández-Pérez H, Salazar-González J-J. The one-commodity pickup-and-
delivery traveling salesman problem: inequalities and algorithms. Networks
2007;50:258–72.

[10] Hernández-Pérez H, Salazar-González J-J. Heuristics for the one-commodity
pickup-and-delivery traveling salesman problem. Transp Sci 2004;38:245–55.

[11] Hernández-Pérez H, Rodríguez-Martín I, Salazar-González J-J. A hybrid GRASP/
VND heuristic for the one-commodity pickup-and-delivery traveling salesman
problem. Comput Oper Res 2009;36:1639–45.

[12] Martinović G, Aleksi I, Baumgartner A. Single-commodity vehicle routing
problem with pickup and delivery service. Math Prob Eng 2008. http://dx.doi.
org/10.1155/2008/697981 Article ID 697981.
[13] Zhao F, Li S, Sun J, Mei D. Genetic algorithm for the one-commodity pickup-
and-delivery traveling salesman problem. Comput Ind Eng 2009;56:1642–8.

[14] Hosny M, Mumford C. Solving the one-commodity pickup and delivery pro-
blem using an adaptive hybrid VNS/SA approach. In: Schaefer R, Cotta C,
Kolodziej J, Rudolph G, editors. Parallel problem solving from nature, PPSN XI,
Lecture notes in computer science, vol. 6239. Berlin; Springer; 2010. p. 189–98.

[15] Mladenović N, Urošević D, Hanafi S, Ilić A. A general variable neighborhood
search for the one-commodity pickup-and-delivery travelling salesman pro-
blem. Eur J Oper Res 2012;220:270–85.

[16] Benchimol M, Benchimol P, Chappert B, De La Taille A, Laroche F, Meunier F,
et al. Balancing the stations of a self service bike hire system. RAIRO-Oper Res
2011;45:37–61.

[17] Chemla D, Meunier F, Wolfler Calvo R. Bike sharing systems: solving the static
rebalancing problem. Discret Optim 2013;10:120–46.

[18] Erdoğan G, Battarra M, Wolfler Calvo R. An exact algorithm for the static
rebalancing problem arising in bicycle sharing systems. Eur J Oper Res
2015;245:667–79.

[19] Raviv T, Tzur M, Forma I. Static repositioning in a bike-sharing system: models
and solution approaches. EURO J Transp Logist 2013;2:187–229.

[20] Papazek P, Raidl G, Rainer-Harbach M, Hu B. A PILOT/VND/GRASP hybrid for
the static balancing of public bicycle sharing systems. In: Computer Aided
Systems Theory-EUROCAST 2013. Springer; 2013. p. 372–9.

[21] Di Gaspero L, Rendl A, Urli T. Balancing bike sharing systems with constraint
programming. Constraints 2015:1–31.

[22] Schuijbroek J, Hampshire R, van Hoeve W-J. Inventory rebalancing and vehicle
routing in bike sharing systems. Tepper School of Business, Carnegie Mellon
University, Working Paper; 2013.

[23] Contardo C, Morency C, Rousseau L-M. Balancing a dynamic public bike-
sharing system, CIRRELT. Technical Report, CIRRELT-2012-09; 2012.

[24] Ergun Ö, Orlin JB. Fast neighborhood search for the single machine total
weighted tardiness problem. Oper Res Lett 2006;34:41–5.

[25] Liao C-J, Tsou H-H, Huang K-L. Neighborhood search procedures for single
machine tardiness scheduling with sequence-dependent setups. Theor Com-
put Sci 2012;434:45–52.

[26] Ibaraki T, Imahori S, Kubo M, Masuda T, Uno T, Yagiura M. Effective local
search algorithms for routing and scheduling problems with general time-
window constraints. Transp Sci 2005;39:206–32.

[27] Ropke S, Pisinger D. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp Sci 2006;40:455–72.

[28] Jacobs LW, Brusco MJ. A local search heuristic for large set-covering problems.
Nav Res Logist 1995;42:1129–40.

[29] Schrimpf G, Schneider J, Stamm-Wilbrandt H, Dueck G. Record breaking
optimization results using the ruin and recreate principle. J Comput Phys
2000;159:139–71.

[30] Shaw P. Using constraint programming and local search methods to solve
vehicle routing problems. In: Maher MJ, Puget, J-F, editors. Principles and
practice of constraint programming – CP98. Lecture notes in computer sci-
ence, vol. 1520. Springer, 1998. p. 417–31.

[31] Ruiz R, Stützle T. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. Eur J Oper Res 2007;177:2033–49.

[32] Richmond AJ, Beasley JE. An iterative construction heuristic for the ore
selection problem. J Heuristics 2004;10:153–67.

[33] Cesta A, Oddi A, Smith SF. Iterative flattening: a scalable method for solving
multi-capacity scheduling problems. In: Proceedings of the seventeenth
national conference on artificial intelligence. AAAI Press/The MIT Press; 2000.
p. 742–7.

[34] Clarke G, Wright JW. Scheduling of vehicles from a central depot to a number
of delivery points. Oper Res 1964;12:568–81.

[35] Hansen P, Mladenović N. Variable neighborhood search: principles and
applications. Eur J Oper Res 2001;130:449–67.

[36] den Besten M, Stützle T. Neighborhoods revisited: an experimental investi-
gation into the effectiveness of variable neighborhood descent for scheduling.
In: Proceedings of the 4th metaheuristics international conference, vol. 2,
Porto, Portugal; July 2001. p. 545–50.

[37] Dell'Amico M, Iori M, Novellani S, Stützle T. New real-world instances for the
bike sharing rebalancing problem. [Online]. Available: 〈http://www.or.unim
ore.it/resources/BRP2/instances.html〉; 2015.

[38] López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M. The irace package,
iterated race for automatic algorithm configuration. Technical Report, IRIDIA,
Université Libre de Bruxelles, Belgium, TR/IRIDIA/2011-004; 2011. [Online].
Available: 〈http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf〉.

http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref1
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref1
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref1
http://bike-sharing.blogspot.it/
http://bike-sharing.blogspot.it/
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref3
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref3
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref3
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref3
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref4
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref4
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref4
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref4
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref6
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref6
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref6
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref9
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref9
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref9
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref9
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref10
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref10
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref10
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref11
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref11
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref11
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref11
http://dx.doi.org/10.1155/2008/697981
http://dx.doi.org/10.1155/2008/697981
http://dx.doi.org/10.1155/2008/697981
http://dx.doi.org/10.1155/2008/697981
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref13
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref13
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref13
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref15
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref15
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref15
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref15
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref15
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref15
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref15
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref15
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref15
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref15
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref16
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref16
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref16
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref16
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref17
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref17
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref17
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref18
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref18
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref18
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref18
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref19
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref19
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref19
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref21
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref21
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref21
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref24
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref24
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref24
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref25
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref25
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref25
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref25
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref26
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref26
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref26
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref26
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref27
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref27
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref27
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref28
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref28
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref28
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref29
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref29
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref29
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref29
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref31
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref31
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref31
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref32
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref32
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref32
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref34
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref34
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref34
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref35
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref35
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref35
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref35
http://refhub.elsevier.com/S0305-0548(16)30001-6/sbref35
http://www.or.unimore.it/resources/BRP2/instances.html
http://www.or.unimore.it/resources/BRP2/instances.html
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

	A destroy and repair algorithm for the Bike sharing Rebalancing Problem
	Introduction
	Problem description
	Formulation for the BRP
	A generalization of the BRP: the 1-PDVRPD
	Prior work

	Properties of feasible paths for the BRP
	Destroy and repair algorithm
	Constructive algorithm
	DestroyProcedure
	RepairProcedure
	Local search procedures

	Adaptation to the 1-PDVRPD
	Destroy and repair for the 1-PDVRPD
	Branch-and-cut for the 1-PDVRPD
	Valid inequalities
	Separation procedures

	Computational results
	Small-size instances
	Medium-size instances
	Large-size instances
	Local search procedures evaluation
	1-PDVRPD instances

	Conclusions
	Acknowledgments
	References

