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Abstract

Diabetes mellitus worsens cardiovascular risk profile of affected individuals. Its worldwide increasing prevalence
and its negative influences on vascular walls morphology and function are able to induce the expression of several
morbidities which worsen the clinical conditions of the patients getting them running towards a reduced survival
curve.

Although overt diabetes increases the mortality rate of individuals due to its pathogenesis, poor information are in
literature about the role of pre-diabetes and family history of diabetes mellitus in the outcome of general population.

This emphasizes the importance of early detection of vascular impairment in subjects at risk of developing
diabetes.

The identification of early stages of atherosclerotic diseases in diabetic persons is a fundamental step in the risk
stratification protocols followed-up by physicians in order to have a complete overview about the clinical status of
such individuals. Common carotid intima-media thickness, flow-mediated vasodilatation, pulse wave velocity are
instrumental tools able to detect the early impairment in cardiovascular system and stratify cardiovascular risk of
individuals.

The aim of this review is to get a general perspective on the complex relationship between cardiovascular
diseases onset, pre-diabetes and family history of diabetes. Furthermore, it points out the influence of diabetes on
heart function till the expression of the so-called diabetic cardiomyopathy.

Keywords Diabetes; Pre-diabetes; Family history; Diabetic
cardiomyopathy; Cardiovascular risk

Introduction
Diabetes mellitus (DM) is a worrisome health-related problem.

According to recent data, the number of person suffering from
diabetes mellitus (DM) is expected to double in the next 25 years,
passing from the 175 million affected individuals in 2000 to the 353
million in 2030 [1]. The developing countries encounter the major
increase in the prevalence of such a metabolic disease [1].

To identify individuals in early stages of DM is fundamental in
order to potentially prevent the occurrence of DM and its related,
systemic complications. In particular, cardiovascular diseases (CVD)
are the leading cause of morbidity and mortality for patients suffering
from DM [2]. Atherosclerosis diabetes-related is the major source of
CVD in patients suffering from diabetes mellitus types 1 and 2 (T1D
and T2D) [3]. The metabolic alterations due to the diabetes are able to
impair morphological and functional characteristics of the vascular
walls and this condition plays as precursor of atherosclerotic plaques
development, thus as the main determinant of the CVD onset [3].

The identification of early stages of atherosclerotic diseases in
diabetic persons is a fundamental step in the risk stratification
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protocols followed-up by physicians in order to have a complete
overview about the clinical status of such individuals.

The aim of this review is to get a general perspective on the complex
relationship between cardiovascular diseases onset, pre-diabetes and
family history of diabetes, trying to point out the consequences of such
conditions on cardiovascular system and the influence of them on the
generation of the so-called diabetic cardiomyopathy.

Pre-Diabetes and Early Impairment in Cardiovascular
System

According to the American Diabetes Association (ADA) the term
pre-diabetes is defined as a metabolic clinical condition able to
predispose affected individual to a future development of diabetes [4].
Pre-diabetes involves the following two conditions: impaired fasting
glucose (IFG) and/or impaired glucose tolerance (IGT). According to
biochemical and laboratory parameters and in agreement with ADA
guidelines’ definitions [4], IFG is defined as a fasting plasma glucose
levels ranging from 100 mg/dL (5.6 mmol/L) to 125 mg/dL (6.9
mmol/L); IGT as a condition characterized by 2-h values of plasma
glucose in the oral glucose tolerance test (OGTT) ranging from 140
mg/dL (7.8 mmol/L) to 199 mg/dL (11.0 mmol/L). Furthermore, a
glycated hemoglobin (HbA1C) plasma levels ranging from 5.7% to
6.4% is further consider as pre-diabetic condition [4].

According to NHANES (National Health and Nutrition
Examination Survey) data [5], the overall IGT prevalence in the
United States (U.S.) population over 20 years of age is 13.8%. The
prevalence progressively rises with the increase of age. Furthermore,
the estimated U.S. prevalence of IFG in adults over 20 years of age was
approximately 6.9% [6].

Several evidences indicate that pre-diabetes conditions may be
associated to increased cardiovascular risk profile of individuals [7-10]
(Figure 1).

Figure 1: The role of pre-diabetes and family history of diabetes in
increasing cardiovascular risk profile of individuals. baPWV:
Brachial-Ankle Pulse Wave Velocity; c-IMT: Common Carotid
Intima-Media Thickness; FMD: Brachial Artery Flow Mediated
Vasodilation; ET-1: Endotelin-1; HbA1C: Glycated Hemoglobin;
MAPK: Mitogen-Activated Protein Kinase; NO: Nitric Oxide;
OGTT: Oral Glucose Tolerance Test

Shah et al. [7] recently demonstrated that obese young patients
suffering from pre-diabetes were more prone to show increased

common carotid intima-media thickness (a well-known early marker
of atherosclerosis) than obese youth with normal glycemic control.
Apart from the morphological alterations in systemic vascular beds,
pre-diabetes is effectively able to worsen the performance of coronary
vessels which increases the overall cardiovascular risk of individuals.
Erdogan et al. [9] evaluated the coronary flow reserve (CFR) in pre-
diabetic, diabetic and normal glycemic patients. The pre-diabetic
condition was able to impair the endothelial function of coronary
vessels (percentages of pre-diabetic patients with CFR <2%: 17% vs
percentages of normal subjects with CFR <2%: 5%, p<0.05) [9]. Such
results were maintained even after adjusting for confounding factors,
revealing diabetes as a real predictor of CFR impairment (β=−0.57,
p<0.01). A meta-analysis from Levitan et al. [10] pointed out that
effectively pre-diabetic condition is able to increase the cardiovascular
risk profile of individuals. When considering non-diabetic
hyperglycemic patients, those showing the highest fasting blood
glucose concentrations had a relative risk equal to 1.27 [95%
confidential interval (CI), 1.09-1.48] to develop cardiovascular diseases
[10]. Multivariable regression analysis continued to confirm the results
as it pointed out a relative risk equal to 1.19 (95% CI, 1.07-1.32) to
develop cardiovascular events [10].

Therefore, IFG and IGT should be considered risk factors for the
development of diabetes and conditions associated with the
development of macrovascular and microvascular disease (Figure 1).

The pathogenesis of the vascular impairment in pre-diabetic
conditions is particularly intriguing. It is known that two metabolic
defects occur in most patients suffering from T2D: insulin resistance
and/or insulin secretion deficiency. The consequence of the impaired
insulin secretion from pancreatic beta cells can be due to a loss of beta
cells or impairment in the beta cell function.

All these conditions leading to diabetes may occur at a lesser extent
in course of pre-diabetes [11]. Most of people suffering from pre-
diabetes often reveal insulin-resistance [11]. Such situations negatively
influence systemic healthy conditions of individuals above all due to
the hyperglycemic state induced by impaired pancreatic beta-cells
function or by the peripheral cell resistance to insulin. Incretins’
alterations are also involved in the pathogenesis of pre-diabetes and
type 2 diabetes. Incretins are hormones produces by enteroendocrine
L cells of the small and large intestine [12]. The two major
representative hormones of such a family are glucose-dependent
insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)
and they are able to exert an important role on beta-/alpha-cells of
pancreatic islet and on several structures and cells widespread in the
organism [12]. Their main action is to potentiate post-prandial
augmentation of insulin secretion from pancreatic cells. In particular,
they seem to mediate about 50–70% of the overall insulin response
after a mixed meal or glucose ingestion in healthy subjects [12].
Therefore, alterations involving the synthesis, the secretion process,
the interactions of these hormones with their receptors and the
transduction of the signal mediated by the coupling between incretins
and their receptors are all conditions related to the development of
pre-diabetes and later of frank T2D onset [13,14]. Unfortunately,
incretins’ impairments are able to exert negative roles on heart and
vessels: the relative insulin-resistance induced by incretins’ reduced
production/action impairs the energy availability of the myocardium,
condition that can worsen heart function [15]. Furthermore, the
transduction of the signal through their receptors makes the incretins
to enhance the mitogen-activated protein kinase (MAPK) pathways:
the relative biochemical pathways are able to activate functions which
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promote improvements in cardiac function and protection towards
ischemia [15]. Finally, incretins mediate the nitric oxide/cyclic
guanosine monophosphate (cGMP)-dependent pathway in the
vascular endothelial cells: this is fundamental in order to explain the
endothelial dysfunction related to incretins’ impairments in their
action and the vascular walls morphological and functional damages
often observed in case of pre-diabetes [15].

Hyperglycemia appears to directly impair endothelial cells function
and morphological structure [16,17]. The molecular mechanisms are
not fully understood although several hypotheses tried to explain this
relationship. Several mechanisms are involved and have a common
denominator: oxidative stress and reactive oxygen species’ creation.
Hyperglycemia, in fact, is able to activate protein kinase C which is
able to enhance nicotinamide adenine dinucleotide phosphate
(NADP) oxidase action, thus promoting the genesis of reactive oxygen
species (ROS) and, consequentially, oxidative stress [18,19]. The same
happens after the production of the advanced glycation end (AGE)
products which are compound able to increase NADP oxidase activity
and ROS generation and to augment tissue factor release, i.e. a
molecule able to enhance coagulation processes. Moreover
hyperglycemia is able to increase the flux through the hexosamine
pathway and to induce the polyol pathway, all conditions related to a
further ROS generation and finally to induce over-expression of
growth factors and inflammatory cytokines [16,17].

Furthermore, beyond oxidative stress, hyperglycemia is able to
impair and uncouple endothelial nitric oxide (eNOS) activity [16].
Such an impairment is dangerous because predisposes to endothelial
dysfunction, which is a well know early marker of atherosclerosis and
increased cardiovascular risk [20,21].

Despite such evidences, the interaction between hyperglycemia,
pre-diabetes and vascular impairment is more complex. Literature
studies disagreed with the theory of hyperglycemia as directly able to
induce vascular lesions [22,23]. The theory proposed in the last years
sustained the reciprocal interaction between inflammation and high
blood glucose concentrations as the basic synergism able to increase
the damages and to promote atherosclerosis. Azcutia et al. [22]
demonstrated that it is necessary a pro-inflammatory vascular
condition in order to potentiate the expression of adhesion vascular
molecules and other inflammation-related compounds able to enhance
the atherosclerotic process. The authors, in fact, demonstrated that
pre-diabetic condition was not able to induce the expression of
intercellular adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule-1 (VCAM-1) [22]. Furthermore, high glucose
levels were able to enhance the in vitro expression of extracellular
signal-regulated kinase 1/2 (ERK 1/2) and nuclear transcription factor-
kB (NF-kB) (i.e., well-know activator of adhesion molecules) only
when interleukin 1β (IL-1β) was present [22]. These results confirmed
those coming from Rasmussen et al. [23] demonstrating no increasing
in adhesion molecules VCAM-1 and E-selectin expression on activated
endothelial cells in patients suffering from diabetes and pre-diabetes.
Nevertheless, Lucas et al. [24] recently demonstrated the higher
concentrations of serum cytokines [IL-5, IL-6, IL-7, tumor necrosis
factor-α (TNF-α), and granulocyte-monocyte colony-stimulating
factor (GM-CSF)] in pre-diabetic patients as compared to matched
controls. The combination of systemic inflammatory condition and
high blood glucose levels is the mixture for the atherosclerosis
development: apart from the increase in adhesion molecules
concentrations, pre-diabetes and inflammatory condition are
associates to plasma asymmetrical dimethyl-l-arginine (ADMA) thus

to the development of early endothelial dysfunction in such
individuals [25-27].

It is supposed a role of hyperglycemia and pre-diabetic condition in
enhancing deposition of extracellular matrix (ECM) proteins: the
consequence is a progressive thickening of the internal and external
elastic membrane of the vascular walls and an increasing in vessels’
stiffness [16]. Pericyte loss, capillary microaneurysms and vascular
proliferation are further vascular alteration observed in pre-diabetic
individuals [16,17].

Brownlee [28] optimally unify such theories in its work where all
the aspects of vascular impairment due to altered glycemic control are
expressed. All these changes in vascular wall represent the beginning
of a complex condition named microangiopathy. Therefore, pre-
diabetes is strictly related to microangiopathy although, at the best of
our knowledge, physicians have no laboratory indicators able to detect
this early alteration before their clinical expression.

Microalbuminuria may be considered among indicators: the
prevalence of microalbuminuria is approximately 2-fold higher in
subjects suffering from pre-diabetes than controls [29]. The chronic
and subclinical inflammation due to the hyperinsulinemia and/or
insulin resistance which characterizes pre-diabetes, accounts for the
use of circulating levels of proinflammatory molecules such as C-
reactive protein (CRP) as potential marker of subclinical expression of
pre-diabetes and its microangiopathic lesions [30-32]. Finally, the
number of endothelial progenitor cells (EPC), well-established marker
of early impairment in vascular function, increase in patients suffering
from pre-diabetes [33].

Nevertheless, the consistence of such relationships is really poor
and not standardized. Thus, instrumental evaluations should be
performed [20]. The aim is to point out the early stages of
morphological and functional alterations of vascular wall which are
the background of more severe microangiopathic lesions [34,35].

Altered fasting glycemia contributes to impaired vascular function
in non-obese subjects [35]. In particular, Liu et al. [36] recently
considered 61 patients (mean age: 49.8 ± 4.8 years) suffering from
IGT. The enrolled patients underwent endothelial function evaluation.
They were assessed for endothelium-dependent (by means of reactive
hyperemia after cuff desufflation) and -independent (by means of 0.4
mg sublingual nitroglycerin administration) vasodilation of the
brachial artery. Although the study was limited by the small sample
size, the authors pointed out a significant reduction in endothelium-
dependent vasodilation properties of brachial artery of pre-diabetic
patients as compared to controls. No differences of endothelium-
independent vasodilation were found [36]. Su et al. [37] considered
133 individuals suffering from IGT and IFG and they confirmed that
flow-mediated vasodilatation (FMD) of the brachial artery was
impaired in pre-diabetic patients.

Another early indicator of atherosclerosis is carotid intima-media
thickness (c-IMT) [38,39]. Hulya et al. [40] found higher c-IMT in
pre-diabetic patients as compared to controls. Shah et al. [7]
considered 102 young obese suffering from pre-diabetes. Pre-diabetic
patients showed increased c-IMT as compared to controls (p<0.05),
even after adjusting for confounding factors. Same results came from
Faeh et al.’s [41] study. They observed significant differences between
IGF/IGT and controls in terms of c-IMT (0.71 ± 0.01 mm vs 0.76 ±
0.02 mm; z for trend: p<0.001), even after adjusting for age and sex.
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Pre-diabetes could impair arterial compliance due to the thickening
process and loss of elasticity of the arterial walls. Measurement of
arterial stiffness is considered a useful surrogate marker for early-stage
atherosclerosis detection [20]. Shen et al. [20] showed that brachial-
ankle pulse wave velocity (baPWV), an early marker of atherosclerosis,
was significantly higher in subjects with HbA1C between 5.7%-6.4%
and IFG as compared to subjects with normoglycaemia [42]. These
results presented additional evidence to support the hypothesis that
early development of adverse vascular changes already existed prior to
the development of overt diabetes, suggesting that the strict glycemic
control in pre-diabetic subjects might achieve a positive long-term
protection against atherosclerosis. Shin et al. [43] found that high-
normal glucose group had higher mean baPWV than those of the low-
normal glucose group (1328 ± 167 cm/s vs 1303 ± 196 cm/s, P<0.05);
the same was for the IFG group mean baPWV as compared to controls
(1469 ± 220 cm/s vs 1303 ± 196 cm/s, P<0.05). Multivariate regression
models confirmed these results [43].

Despite such claims, controversies still persist on whether fasting
glucose is able to directly impair endothelial function or not. In
particular, concerns are about the different impact of glycemic control
on micro and microangiopathy that feed the controversies about the
influence of glucose on endothelium. Experimental models from
Cherian et al. [44] involving diabetic rat outlined that a tight glycemic
control was able to reduce the basement membrane thickening in
retinal and glomerular capillaries and fibronectin over-expression at
the same level. This meant that tight glycemic control might positively
influence microangiopathy development. Such conclusions are in
contrast with those coming from Shurter et al. [45] who observed a
progressive worsening of diabetic retinopathy in case–control study
involving type 2 diabetes. In particular, the authors observed that a
tight glycemic control improve the progression of retinopathy from
baseline (+0.7+0.25 units, p=0.015), while the standard glycemic
control group did not showed any significant change in the
progression of their eye disease as compared to baseline (0.03 + 0.14
units, p = NS) [45]. Chilelli et al. [46] proposed a “glycoxidation-
centric” theory: rather than glycemic control, AGEs control is the best
way to reduce the burden of microangiopathy in diabetic patients. A
United Kingdom Prospective Diabetes Studies (UKPDS) sub-
evaluation [47] pointed out that a tight glycemic control was able to
induce a 37% decrease in microvascular complications’ occurrence
(33% to 41%, P<0.0001). Similar results came from the analysis of T1D
patients [48]: a sub-study analysis from the Diabetes Control and
Complications Trial (DCCT) and Epidemiology of Diabetes
Interventions and Complications (EDIC) revealed that intensive
glycemic control was associated to a statistically significant (P<0.001)
slower rate of reduction in the glomerular filtration rate (GFR) and a
statistically significant (P<0.001) increase in the mean estimated GFR
of 2.5 ml per minute per 1.73 m2 as compared to normal intensive
glycemic control [48]. Nevertheless, further studies are needed in
order to better evaluate the role of tight glycemic on diabetic
microangiopathy.

The literature results remain unclear even when considering the
macrovascular expression of diabetes-induced alterations. Referring to
UKPDS sub-research [47], the authors observed a 21% for deaths
related to diabetes (15% to 27%, P<0.0001) and a 14% reduction in
myocardial infarction (8% to 21%, P<0.0001) in intensive control
group. A recent meta-analysis [49] elegantly tried to overcome the
issue of tight glycemic control in macrovascular alterations induced by
diabetes. The data from the major international clinical trial about
such a matter [i.e. Action to Control Cardiovascular Risk in Diabetes

(ACCORD), Action in Diabetes and Vascular Disease: Preterax and
Diamicron Modified Release Controlled Evaluation (ADVANCE),
UKPDS and Veterans Affairs Diabetes Trial (VADT)] had been
analyzed by the authors. The analysis revealed that intensive control
was able to reduce the incidence of the overall major cardiovascular
events (cardiovascular death or non-fatal stroke or non-fatal
myocardial infarction) by 9% (HR: 0.91, 95% CI: 0.84–0.99). Although
such statistical significance was maintained for non-fatal/fatal
myocardial infarction (hazard ratio (HR): 0.85, 95% CI: 0.76–0.94),
when there were analyzed the risk reduction of non-fatal/fatal stroke
and the hospitalization for heart failure, the intensive fasting glucose
control was not able to exert a positive role and lose the previous
significance (HR: 0.96, 95% CI: 0.83–1.10 and HR: 1.00, 95% CI: 0.86–
1.16, respectively) [49]. The authors supposed that such differences in
the results were led by the presence of previous history of
macrovascular disease at randomization: those with prior
macrovascular diseases were less responsive to intensive glycemic
control as compared to those with no prior macrovascular diseases.
Nevertheless, more evidences are needed in order to confirm or not
such data.

Vascular Walls Modifications in Subjects with Family
History of Diabetes

The pre-diabetic condition is related to increased cardiovascular
risk profile of affected individuals [50], as demonstrated by several
studies which revealed the impairment in early markers of
atherosclerosis due to pre-diabetes [51,52]. Insulin resistance is one of
the main features characterizing T2D and some studies pointed out
that it sometimes is a heritable trait [53]. Newmann et al. [54]
demonstrated that T2D is strongly genetically determined. This
information outlines a peculiar aspect of the complex clinical picture
of diabetes and its role on individuals’ prognosis: the role of family
history of diabetes in the overall incidence of cardiovascular events.
Such an aspect is often misunderstood in the clinical assessment of
apparently healthy patients.

First-degree relatives of subjects suffering from T2D show the
metabolic features of insulin resistance before they develop overt
diabetes [55]. Straczkowski et al. [56] demonstrated that insulin
resistance is present even in young lean subjects at high risk to develop
T2D. They compared 17 lean subjects with family history of T2D (first
degree-relatives affected) to 17 matched controls showing no family
history for T2D. Results outlined that the former were more
hyperinsulinemic and insulin-resistant than controls (p<0.05 and
p<0.005, respectively). They supposed that insulin resistance might
account for primary abnormality in the pathogenesis of diabetes in
predisposed subjects [56] (Figure 1).

Furthermore, the increase in insulin blood concentration can
induce by itself an overall increase in the vascular impairment. The
presence of insulin resistance and insulin itself are able to directly
impair the function of endothelial cells as outlined in previous studies
[57,58]. It is known that the interaction between insulin and its
endothelial cells’ receptor is able to activate several biochemical
pathways: 1) insulin receptor substrate-1 (IRS-1)/phosphatidylinositol
3-kinase (PI3K), related phosphorylation of Akt and activation of
eNOS, thus progressive increase in nitric oxide (NO) production and
consequent vasodilatation; 2) activation of Ras/Raf/MAPK pathway
whose ultimate action is the generation of endotelin-1 (ET-1), i.e. a
molecule involved in the vasoconstriction, and its own receptor, ETA
[57,58]. Insulin resistance redirects the pathways activation towards
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ET-1 production: in these conditions, the endothelium is not able to
perform its normal function, the NO production is reduced and
vasoconstriction prevails [57,58]. The final step is endothelial
dysfunction which is a well-known early marker of atherosclerosis.
Furthermore, it was demonstrated that high concentrations of insulin
are able to promote atherosclerosis due to in vitro increased
expression of adhesion molecules on endothelial cells due to the
presence of such a hormone: this is the first step for monocytes
migration into the intima and to their transformation in foam cells
[57,58]. This enhances the atherosclerotic process.

Family history of diabetes mellitus is not only related to a pure
increase in metabolic alterations predisposing to the onset of overt
diabetes but it seems to overcome the endocrinological alterations and
to provoke early lesions even in the vascular walls. Thus, family history
of diabetes increases cardiovascular risk profile of individuals.
Although this is not supported by strong scientific evidences, many
observational studies revealed its relationship with increased
cardiovascular risk.

For example, Balletshofer et al. [59] measured endothelium-
dependent and -independent vasodilation of the brachial artery in 53
normotensive and normoglycemic first-degree relatives of patients
with T2D. They found a significant endothelial dysfunction in such a
category of individuals, independently of the classic cardiovascular
risk factors. Goldfine et al. [60] confirmed the impaired vascular
function in subjects with parents suffering from T2D. In particular,
they evaluated endothelial-dependent vasodilation (by means of
hyperemia cuff deflation) and endothelial-independent vasodilation
(determined after nitroglycerin 0.4 mg sublingually administration).
Endothelial-dependent vasodilation was 38% lower in individuals with
family history of T2D as compared to controls (7.1 ± 0.9% vs. 11.7 ±
1.65, p <0.02). No difference was according to endothelial-
independent vasodilation.

These results are in agreement with those from Scuteri et al. [61].
These authors found that normotensive normoglycemic first-degree
relatives of diabetic subjects showed a 33% decrease in endothelium
dependent vasodilation as compared to controls (9.8 ± 5.2% vs. 16.2 ±
7.6%, p <0.019). Such result was independent of insulin-resistance
conditions of the subjects. Nevertheless, Lee et al.’s [62] results
contrasted all of these. In fact, they measured microvascular
hyperemia induced by heat locally applied to skin by means of laser
Doppler-flowmetry in 21 patients with family history of T2D. Results
pointed out that skin maximum and minimum microvascular
hyperemia did not statistically differ between patients and controls
(p=0.99 and p= 0.70, respectively).

Furthermore, Scuteri et al. [61] found that arterial stiffness,
measured by means of carotid-femoral PWV, was significantly
increased only in first-degree relatives of diabetic subjects. This
confirmed studies reporting a reduced aortic compliance in patients
with family history of diabetes [63].

Apart from endothelial function impairment, family history of
diabetes alters vascular morphology of the vascular walls. Pannacciulli
et al. [64] evaluated c-IMT in 188 individuals aged 18-45 years with
normal glucose tolerance and family history of T2D. They
demonstrated that c-IMT was higher in first-degree family history of
T2D as compared to controls (0.84+0.01 mm vs 0.77+0.01 mm,
p<0.001). In the multiple regression model, c-IMT continued to be
significantly associated with family history of T2D (p<0.01).

Anderwald et al. [65] compared the role of family history of T2D
and of cardiovascular disease on vascular morphology assessed by
means of c-IMT. They considered 1048 patients subdividing them in
four groups according to family history: 1) patients with T2D family
history; 2) patients with family history of cardiovascular diseases; 3)
patients with both family history conditions; 4) patients with no family
history. Results found no relationship between c-IMT and family
history of T2D, while only cardiovascular diseases offspring showed
significant relationship.

These results were in contrasts with previous research from
Anderwald et al. [66] which pointed out that internal carotid artery
intima-media thickness was 18% higher in T2D offspring than
controls. Same results came from Ahmad et al. [67] because they
demonstrated a higher c-IMT in patients with first degree relatives
suffering from T2D, but adjustment for confounding factors did not
confirm the first findings.

Several hypotheses have been generated in order to explain such
relationship between family history of diabetes and cardiovascular risk
profile of individuals. Family history of diabetes increases per se the
risk of coronary heart disease even in non-diabetic subjects [68]. This
may be due to an increased prevalence of abdominal fat content in
such subjects [69], to elevated systolic blood pressure, higher
triglyceride and cholesterol plasma concentration [70], higher
plasminogen activator inhibitor-1 activity [71]. All these conditions
could increase the cardiovascular risk profile of individuals and lead
them to be considered as a “risk population” even considering their
apparently “healthy” general clinical condition.

Diabetic Cardiomyopathy: Pathophysiology and
Diagnostic Evaluation

Diabetes increases the risk of developing heart disease by several-
fold, while more than half of all diabetic patients develop coronary
heart disease and/or hypertension [72,73]. Heart involvement in
diabetes goes beyond the damage to coronary arteries due to the
progress of atherosclerotic process. Diabetes and its
pathophysiological consequences are able to induce direct alterations
and abnormalities in the cardiac muscle functions. Such dysfunctions
lead to impairment in cardiac contractility and ventricle compliance
which create the condition called “diabetic cardiomyopathy”. The
terms “diabetic cardiomyopathy” were initially introduced in 1972 by
Rubler et al. [74] in order to define structural and functional
abnormalities in the myocardium of diabetic patients without
coronary artery disease or hypertension [74,75] (Figure 1). Multiple
mechanisms were supposed to generate such a disease and they
include: alterations in cell survival pathways, extracellular matrix
increased formation, post-translation protein modification and
glucose metabolism.

Inflammation and cardiac insulin resistance
Diabetes is associated to chronic low-grade inflammation and to

increased secretion and activation of pro-inflammatory adipokines
and cytokines [76,77]. These pro-inflammatory molecules contribute
to cardiac insulin resistance because they mediated the
phosphorylation of the serine of the IRS-1 [77]. The alterations in such
a biochemical pathway are crucial for the cardiac cells. IRS-1 is a
critical molecule in the cardiac insulin signaling pathway: its
pleckstrin-homology (PH) domain facilitates the binding to the
phosphorylated insulin receptor, while its SH2 domain allows PI3K

Citation: Ciccone MM, Scicchitano P, Cameli M, Cecere A, Cortese F, et al. (2014) Endothelial Function in Pre-diabetes, Diabetes and Diabetic
Cardiomyopathy: A Review. J Diabetes Metab 5: 364. doi:10.4172/2155-6156.1000364

Page 5 of 10

J Diabetes Metab
ISSN:2155-6156 JDM, an open access journal

Volume 5 • Issue 4 • 1000364

http://dx.doi.org/10.4172/2155-6156.1000364


activation [78]. PI3K phosphorylates protein kinase B (Akt) ultimately
leading to the translocation of the glucose transporter 4 (GLUT4) at
the cardiomyocyte cell surface, thus facilitating glucose uptake [79].
TNF-α is also implicated in the induction of cardiac insulin resistance.
It activates NF-κB as well as the redox-sensitive Ser C-Jun N-terminal
kinase (JNK): such activations induce phosphorylation of the serine of
IRS-1, which targets such a molecule to the degradation via ubiquitin
pathway [80,81].

Structural and functional changes in the heart as a result of
diabetes

Several molecular signaling pathways are implicated in the
development of cardiac dysfunction in diabetes individuals [82,83].
Hyperinsulinemia, hyperglycemia and insulin resistance increase
oxidative stress which may account for the initial damages to cardiac
cells [84,85]. Furthermore, the increased circulating free fatty acids
(FA) and altered lipids metabolism induce FAs accumulation and
lipotoxicity in the heart [86].

These events firstly induce a diastolic dysfunction which precedes
the development of systolic one [83,87]. In particular, the diastolic
dysfunction leads to progressive fibrosis, impaired calcium handling in
the heart and, thus, to contractile dysfunction, cardiac autonomic
neuropathy and increased mitochondrial and endoplasmic reticulum
stress contributing to the reduced cardiac energy load [82,83].

Furthermore, all these alterations are able to macroscopically affect
the heart. Diabetic cardiomyopathy is effectively characterized by a
disproportionate increase in left ventricular mass and myocardial
fibrosis. This is the background for the development of ventricular
wall stiffness and increased diastolic relaxation time which constitute
the early moments of that diastolic dysfunction characterizing early
stages of cardiomyopathy [88]. The accumulation of triglycerides and
impaired calcium reuptake can molecularly contribute to the cardiac
diastolic dysfunction [83,87,88]. The progression to systolic
dysfunction is characterized by an eccentric (dilated) cardiac
remodeling slowly progressing towards heart failure [89]. Such
progression is induced by the cardiomyocytes death and their
replacement with fibroblasts and interstitial fibrosis [90-92]. Such
events can be detected even in researches involving humans. Although
literature is poor about human protocols demonstrating the effects of
pre-diabetes and diabetes on direct evidence of cardiac myocytes
hypertrophy, some evidences can be outlined. De Marco et al. [93]
evaluated echocardiographic data from 1624 young patients (mean age
26.6 ± 7.7 years) differentiating them according to glycemic condition
into three groups: normal fasting glucose individuals impaired fasting
glucose (pre-diabetic) subjects and diabetes patients. Their
multivariate regression model pointed out that the latter two groups
were formed by individuals showing left ventricular mass index
(LVMI) higher than controls (diabetes LVMI: 41.5 ± 8.7 and pre-
diabetes LVMI: 39.6 ± 9.2 vs. controls LVMI: 35.6 ± 7.8 g/m2.7) [93].
The relationship was maintained even according the prevalence of left
ventricle hypertrophy among the three groups.

An elegant study from Velagaleti et al. [94] demonstrated that pre-
diabetic and diabetic Framingham Heart Study Offspring individuals
showed a direct relationship between their insulin-resistance condition
and the ratio between left ventricular mass to end-diastolic volume
ratio: this was expression of a concentric remodeling occurring more
often in such patients than their normal counterpart [94]. Such results
were prospectively demonstrated by Lee et al. [95], confirming the

association between cardiac morphological alterations and pre-
diabetic condition.

Furthermore, the toxic action of free fatty acids on mitochondrial
activities leads to mitochondrial apoptosis and reduced adenosine
triphosphate (ATP) bioavailability for the heart needs: this precipitates
impairment in cardiac contractility and ejection fraction [96].

Diagnostic evaluation of diabetic cardiomyopathy
Several diagnostic methods can assess early moments of structural

and functional cardiac alterations in diabetic patients:
echocardiography, magnetic resonance image (MRI), computed
tomography (CT) and positron emission tomography (PET) scans are
all eligible techniques [97]. Trans-thoracic echocardiography (TTE) is
not always appropriate for some categories of patients (obese,
asthmatic, etc) due to the poor quality of the images obtained. MRI
can be more useful because it allows visual characterization of the
heart cavity, including size of the chambers, wall thickness,
functionality assessment, etc [98].

Two-dimensional echocardiography [99-101] and late gadolinium
(Gd) enhancement in cardiac MRI [102] easily detect interstitial
fibrosis in diabetic hearts. In particular, Kwong et al. [102] observed
late Gd-enhancement in MRI in 28% of diabetic patients without
clinical evidence of myocardial infarction. Which of the two clinical
methods is more sensitive for the detection of ventricular fibrosis in
diabetic hearts remains unclear.

The most frequent early echocardiographic finding in
asymptomatic diabetic patients is LV diastolic dysfunction not
associated to hypertrophy [103,104]. Tissue Doppler imaging (TDI) is
particularly sensitive in detecting left ventricle diastolic dysfunction
than conventional TTE because it directly measures myocardial tissue
velocities in agreement with cardiac cycle: the impairment in
ventricular compliance leads to reduced myocardial tissue velocities
and TDI parameters alteration. In diabetic cardiomyopathy, the E’
wave is significantly lower than controls [105,106]. Furthermore, the
evolution of diabetic cardiomyopathy is the systolic dysfunction.
Several studies demonstrated reduced left ventricle fractional
shortening and mid-wall shortening in diabetic subjects as compared
to controls [107-109]. Furthermore, TDI researches revealed that the
peak systolic velocity (S’) was lower in T2D patients as compared to
non-diabetic subjects, even if left ventricle ejection fraction was similar
[106].

Two-dimensional speckle tracking can be employed for assessment
of left ventricle systolic and diastolic dysfunction [105,110]. In
particular, longitudinal strain is reduced in asymptomatic patients
with uncomplicated diabetes mellitus [111,112].

Conclusions
Diabetes is a subtle disease, able to impair the clinical conditions of

individuals even when it is not already expressed in its classical
metabolic forms. Family history of diabetes, for example, account for
an increase in cardiovascular risk of individuals even if such subjects
have no sign of pre-diabetes or diabetes: the demonstration of an
insulin resistance condition can account for the induction of an
endothelial impairment able to enhance atherosclerotic disease.

Pre-diabetic condition is a further expression of incipient
atherosclerosis development. The synergism between a systemic
inflammatory condition and the presence of high blood glucose
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concentrations are the mix able to impair vascular endothelium in its
function, thus predisposing to atherosclerotic lesions. Thus, all these
patients should be carefully evaluated in order to detect early sign of
alterations by means of all the available non-invasive techniques.

All the scientists’ efforts should be addressed to the prevention of
the onset of the most dangerous lesions induced by diabetes: diabetic
cardiomyopathy. The enhanced oxidative stress, the increased
circulating free fatty acids and the altered lipids metabolism induce
heart structure damages that can lead to diabetic cardiomyopathy and
that can be found by non-invasive instrumental technique.
Nevertheless, the inner mechanisms underlining such progression of
the cardiac damages are still not fully understood and more trials are
needed.
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