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Emerging pervasive computing services will typically involve a large number of devices and service

components cooperating together in an open and dynamic environment. This calls for suitable
models and infrastructures promoting spontaneous, situated, and self-adaptive interactions be-

tween components. SAPERE (“Self-aware Pervasive Service Ecosystems”) is a general coordina-

tion framework aimed at facilitating the decentralized and situated execution of self-organizing
and self-adaptive pervasive computing services. SAPERE adopts a nature-inspired approach, in

which pervasive services are modeled and deployed as autonomous individuals in an ecosystem of

other services and devices, all of which interacting in accord to a limited set of coordination laws,
or “eco-laws”. In this paper, we present the overall rationale underlying SAPERE and its refer-

ence architecture. Following, we introduce the eco-laws-based coordination model, and show how

it can be used to express and easily enforce general-purpose self-organizing coordination patterns.
The middleware infrastructure supporting the SAPERE model is presented and evaluated, and

the overall advantages of SAPERE are discussed in the context of exemplary use cases.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and Mainten-

ance; H.4.0 [Information Systems Applications]: General; I.2.11 [Artificial Intelligence]:

Multiagent Systems; C.2.4 [Computer-Communication Systems]: Distributed Systems

Additional Key Words and Phrases: Pervasive Computing; Middleware; Self-organization; Coor-

dination

1. INTRODUCTION

Advances in ubiquitous, mobile and embedded computing technologies are leading
to the emergence of an integrated and dense infrastructure for the provisioning of
innovative general-purpose applications and services [Zambonelli 2012; Harnie et al.
2014]. The infrastructure will be used to ubiquitously access services for better in-
teracting with the surrounding physical world and with the social activities in it
[Lukowicz et al. 2012]. It is also expected that users will be able to deploy cus-
tomized services and to enrich existing ones by making available their own devices
and components [Campbell et al. 2008].

We are already facing the release of early pervasive services trying to exploit
the possibilities opened by these new scenarios in the form of, e.g., environmental
displays capable of reacting to users’ presence [Alt et al. 2012; Elhart et al. 2013],
car navigation systems with real-time traffic information [Riener and Ferscha 2013],
and location-based social services [Pejovic and Musolesi 2013; Schuster et al. 2013].
However, the full exploitation of the emerging pervasive computing infrastructure
requires innovative solutions to support the development of advanced services and
applications, and in particular of services capable of flexibly and adaptively inter-
acting with each each other on a spatial and context-aware basis.

A number of research proposals exist for middleware architectures and coordi-
nation models supporting the engineering of pervasive applications [Raychoudhury
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et al. 2013]. Among the others, some recent proposals absorb concepts from self-
organizing and self-adaptive natural systems [Omicini 2012; Zambonelli and Viroli
2011]. Getting inspiration from nature can in fact be effective to support sponta-
neous composition of services, to support spatiality and situatedness, and to pro-
mote self-organization and self-adaptation. Unfortunately, many nature-inspired
solutions are proposed in terms of “add-ons” to be integrated in existing frame-
works [Babaoglu et al. 2006]. The result is often an increased complexity and the
emergence of contrasting trade-offs between different solutions.

Against this background, the SAPERE approach (www.sapere-project.eu) defines
a fully-fledged nature-inspired and self-organizing framework for the engineering of
distributed pervasive services, via which to uniformly tackle the emerging require-
ments of pervasive service systems.

The main contribution of this paper is to present the SAPERE architecture and
coordination mechanisms. In particular, it shows that the SAPERE architecture
can support the development of pervasive applications by generalizing and incorpo-
rating a number of useful nature-inspired self-organizing mechanisms (e.g., chemi-
cal bonds [Fernandez et al. 2014], stigmergy [Parunak 1997], and fields-based ap-
proaches [Mamei and Zambonelli 2009]). By using the SAPERE framework instead
of relying on a number of different tools and solutions, developers can program the
self-organizing and self-adapting mechanisms that are useful to their applications
(or mobile apps) within the same conceptual model and architecture.

The remainder of this article is organized as follows:

—It motivates the suitability of nature-inspired approaches for the engineering of
pervasive service systems, and the need for a novel synthesis of nature-inspired
coordination mechanisms (Section 2);

—It introduces the reference conceptual architecture of SAPERE, its operational
counterpart, and overviews the key aspects of its coordination model (Section 3);

—It details – also with the help of practical examples – the SAPERE coordination
model and the associated programming model (Section 4), and discusses how it
can be exploited to support adaptive self-organizing patterns (Section 5);

—It presents the design and implementation of the SAPERE middleware archi-
tecture (Section 6), and experimentally evaluates its effectiveness in supporting
SAPERE applications (Section 7);

Finally, Section 8 discusses related work in the area and Section 9 concludes and
sketches future development.

2. REQUIREMENTS AND MOTIVATIONS

From the analysis of the literature in this area, we identified some key requirements
that are important to manage the complexity of future pervasive service scenarios.
As discussed below, these requirements can hardly be met by traditional approaches
to distributed systems engineering. The extent to which research proposals related
to SAPERE meet these requirements is discussed in Section 8.
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2.1 Requirements

Spontaneous and open interactions. Components of pervasive applications need
to interact seamlessly with each other in a spontaneous way [Raychoudhury et al.
2013]. They should be provided with flexible means for discovering other compo-
nents on-the-fly, engaging them in effective interaction patterns, without much a
priori information or statically encoded strategies. This is also aimed at opening the
scenarios to the dynamic deployment (also by users) of new components/devices/services
in a fully decentralized way.
Context and Situation Awareness. Components of pervasive applications have to
be supported in acquiring information about the surrounding context, and dynam-
ically adapting to it, which calls for mechanisms to obtain an high level represen-
tation/summary of relevant contextual parameters [Ye et al. 2012; Roggen et al.
2013]. This is not only about flexibly interacting with context-data sources (as in
the first requirement), but also about having mechanisms to aggregate, summarize
and extract knowledge from the data – knowledge that can be possibly re-used by
various application components.
Proxemic Interactions and Location-based Activities. Proxemic interactions and
location based applications are at the basis of mainstream pervasive applications
[Greenberg et al. 2011]. In many applications, the behavior of applications and
services strongly depends on the spatial context as well as on the relative spatial
positioning of users and devices. Accordingly, components should be provided with
mechanisms to deal with distances and spatial information [Beal et al. 2012], and
should be supported in navigating such a space.
Self-adaptation and self-organization. Pervasive computing scenarios are inherently
open and decentralized (devices and service components belong to multiple stake-
holders), and dynamic (due to the presence of mobile and ephemeral devices and
components). This makes it impossible for humans to intervene in the system
for low-level configuration, management and maintenance activities [Kephart and
Chess 2003; de Lemos et al. 2013]. Rather, applications and services should be
able to self-adapt (which includes self-configure, self-manage, and self-heal) their
activities and self-organize their interaction patterns with little or no configuration
and management efforts.

2.2 From Top-Down to Bottom-up Nature-inspired Approaches

The need for software systems to become more open, capable of dealing with the
dynamics of unpredictable environments, and able to self-adapt their behavior in
response to contextual changes, has been widely recognized in the areas of soft-
ware engineering [Cheng et al. 2009; de Lemos et al. 2013] and distributed systems
[Brazier et al. 2009; Babaoglu et al. 2006; Zambonelli and Viroli 2011].

In the area of software engineering, many proposal considers to integrate self-
adaptation capabilities with software systems by coupling them with autonomic
control loops [Kephart and Chess 2003]. Such control loops can dynamically moni-
tor the behavior of the system and trigger adaptation actions on need [Kephart and
Chess 2003; Vromant et al. 2011]. In the case of distributed systems this requires
multiple control loops, each devoted to control a portion the system, coordinating
with each other [Weyns et al. 2012].
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Approaches based on the engineering of control loops achieve situation-awareness
and self-adaptation by design, i.e., in a “top down” way. This may work well for
systems of limited size and where the developer has control over the system as a
whole. For large and decentralized systems whose components belong to differ-
ent stakeholders (as pervasive services systems), solutions that are able to meet
the requirements and promote context-aware and self-adaptive behavior without
centralized pre-defined control strategies, i.e., in a “bottom up” way, are to be pre-
ferred [Cheng et al. 2009]. In particular, getting inspiration from natural systems
and from their capability of promoting the bottom up emergence of self-organized
patterns of coordinated behaviors may represent a suitable approach.

Indeed, a number of natural systems (e.g., ant colonies), put in act coordination
mechanisms and express behaviors that let them meet the identified requirements
spontaneously and very efficiently [Omicini 2012]. Ants, for example, interact in-
directly with each other, by depositing and locally smelling pheromones in the
environment. This kind of communication based on “signs” left in the environ-
ment and acting as a sort of externalized memory is generally called Stigmergy
[Babaoglu et al. 2006; Parunak 1997]. In general, stigmergic interactions decouple
interacting agents, and let interactions take place spontaneously (e.g., ants interact
independently of their explicit will) and in an open way (ants do not need to be
aware of each other). Locality in depositing and smelling pheromones enforce prox-
emic and location-based interactions. Also, pheromones inherently express some
fact/event/information occurred in that portion of the environment, i.e., they pro-
mote simple forms of situation-aware interactions. Finally, the overall activities of
ants in depositing pheromones and thus building complex distributed pheromones
structure, and in reacting to the presence and shape of such structures, globally
make globally coordinated finalized behaviors emerge in the colony, supporting self-
adaptation and self-organization.

In addition to stigmergy, other natural systems exploit different coordination
mechanisms and have inspired coordination models that are capable – with different
extents – of meeting some the requirements of pervasive service systems.

Gossip-based/Epidemic Protocols are inspired by the form of gossip seen in social
networks, and by the way a virus spreads in a biological community [Jelasity et al.
2005; Bicocchi et al. 2012]. These approaches well address the requirement on
context-awareness and in particular on situation-awareness, in that they allow to
flexibly combine and aggregate contextual information from multiple sources in a
decentralized and robust way. In addition, the way to distributed and manipulate
information in gossip-based/epidemic protocols is also very open and adaptive.

Fields are inspired by physical force fields and chemical gradients, aim at con-
veying a sense of space in distributed systems in the form of spanning-tree data
structures diffused across the network to provide distance information from the
source [Mamei and Zambonelli 2009; Beal et al. 2012]. These approaches well ad-
dress on proxemic interactions and location-based activities and of a specific form
of situation-awareness, i.e., spatial awareness enabling to effectively engineer dis-
tributed motion coordination and location-based coordination activities [Mamei
and Zambonelli 2009].

Artificial Chemistries and Artificial Immune Systems, inspired by chemical reac-
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tions [Fernandez et al. 2014] and immune systems [Read et al. 2012], are mechanisms
based on simple-yet-flexible matching rules that use a digital description or “foot-
print” of the involved components to trigger interactions and compositions among
them. Such approaches effectively support spontaneous and self-adaptive interac-
tions depending on contextual conditions and in the presence of large classes of
diverse components (as it can be the case for pervasive systems). However, these
mechanisms typically lack the notions of space and of distributed data manipulation
that exist in the other approaches.

2.3 Towards a Unified Nature-Inspired Architecture

The main idea at the basis of our work is to identify a unified architecture and
approach to incorporate the above mechanisms and nature-inspired schemes into a
coherent modeling framework, so as to get the best from each of them.

To this end, and without committing to a specific natural metaphor, one can gen-
erally consider a pervasive computing scenaas a sort of natural ecosystems. There,
interactions and the overall coordination among components are not ruled by prede-
fined orchestrated patterns, but are simply subjected to a limited set of coordination
laws, acting as a sort of synthetic “laws of nature” for the ecosystem (or, shortly,
“eco-laws”). From the enactment of the eco-laws, even complex patterns of inter-
actions dynamically emerge via self-organization, the same as it happens in natural
systems that evolve and organize by simply obeying natural laws (whether physical,
chemical, or biological laws).

To get the best from the introduced nature-inspired mechanisms, the overall
modeling of the ecosystem components and of its coordination laws should (i) have
the flexibility of chemical systems in supporting spontaneous interactions and com-
position among diverse components; (ii) tolerate stigmergic means of interactions,
i.e., rely on the components’ ability to externalize contextual information to be
locally shared with other components; (iii) support spatial abstractions means to
propagate spatial information in the forms of fields, so as to support spatial aware-
ness and spatial coordination schemes; and (iv) support distributed aggregation
and manipulation of information, towards advanced forms of situation awareness.

As it will become clear in the course of the following sections, this is exactly the
rationale behind SAPERE, its conceptual architecture, and its coordination model.

3. THE SAPERE APPROACH: OVERVIEW

3.1 Reference Conceptual Architecture

In line with a nature-inspired vision, SAPERE models and architects a pervasive
service environment as a sort of abstract computational ecosystem, built around a
spatial substrate – i.e., a set of components modeling the space where application
agents execute – laid above the actual pervasive network infrastructure (Figure 1).

Interactions take place by publishing and accessing information and events (in
the form of tuples called “Live Semantic Annotations” or “LSAs”) in specific loca-
tions of the spatial substrate. The substrate stores such LSAs and rules how they
can be manipulated (e.g., linked with each other in a sort of virtual information
chemistry), how they can be perceived (as if LSAs were sorts of stigmergic signs
in the environment), how they can be possibly propagated (to support the con-
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Fig. 1. The SAPERE reference architecture.

struction of distributed data structures such as fields) or aggregated (to support
epidemic aggregation). Such rules – which we call “eco-laws” defines the laws ruling
interactions among SAPERE individuals. In a way somewhat similar to tuple-based
coordination models [Gelernter 1985; Eugster et al. 2003], we can say that SAPERE
defines a nature-inspired coordination model, where the SAPERE spatial substrate
acts as a coordination space embedding and enforcing the coordination laws (that
is, the“eco-laws”) to rule the interactions between the individuals of the ecosystem.

The population of SAPERE individuals is represented by software agents, each
associated to one of the components that can play some roles in the provisioning of
pervasive services. These include agents in charge of representing and interfacing
with all pervasive devices around (e.g., ambient sensors, smart phones and individ-
ual sensors within, interactive displays and generic actuators) and agents in charge
of providing specific services and algorithmic functionalities. All these agents are
expected to locally access the shared substrate of the ecosystem and thus indirectly
interact with each other – in respect of the eco-laws – so as to serve their own
individual needs and the sustainability of the overall ecosystem.

Users themselves (e.g., via an app on a smart phone) can access the SAPERE
ecosystem in a decentralized way, to use and consume data and services (as resulting
from the activities of the ecosystem). Users can also act as “prosumers” by making
available (in the form of SAPERE agents) new service components, new devices, or
new sensor data, possibly also for the sake of controlling the ecosystem behavior.

Each SAPERE agent can take part in the ecosystem by publishing (or “inject-
ing”) in the spatial substrate a semantic description of itself in the form of an LSA
tuple. An LSA is an observable interface of the agent that can encapsulate infor-
mation to describe the agent itself and the data it can produce, and that can reify
events occurring within the agent. To account for the high dynamics of the scenario
and for its need of continuous adaptation, LSAs are “alive” in the sense that can
have continuously updating content, to reflect the current situation and context of
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the component they describe. For instance: an ambient sensor can be represented
by an LSA describing the nature of the sensors and including the alive data that
represents the currently sensed information; a pervasive display can be represented
by an LSA describing the available display features and the updated information
about the currently displayed information.

3.2 The Coordination Model in a Nutshell

The SAPERE coordination model considers that agents interact indirectly via
LSAs, and based on how eco-laws act on such LSAs. The idea is to enforce, on
a spatial and situation-aware basis and possibly relying on diffusive mechanisms,
spontaneous networking and composition of data and services (as represented by
the LSAs of the associated agents), capable of promoting adaptation to situations
and facilitating the engineering of self-organizing coordination schemes.

The set of eco-laws that rules the interactions among SAPERE agents includes:

—Bond, the basic mechanism for local interactions between agents which links to-
gether spatially co-located LSAs whenever the matching conditions exist. When
their LSAs are linked together, agents can access each other’s information and
functionalities. This is the basic mechanism enabling interactions in SAPERE,
which subsumes virtual chemical composition (by linking together LSAs and,
thus, the corresponding agents) and stigmergy (since LSAs are information left
in the environment by some agents and perceivable by other agents).

—Spread, which diffuses LSAs on a spatial basis in the spatial substrate, and is
necessary to support spatial-awareness by agents, propagation of information,
and interactions among remote agents. In particular, spreading of LSAs is a basic
mechanism via which to support advanced forms of distributed self-organization
[Mamei and Zambonelli 2009].

—Aggregate, which can spontaneously produce new LSAs deriving from the aggre-
gation of existing ones, and can support both the local computing of aggregated
information as well as – in synergy with the spread eco-law – forms of gossip-
based distributed data aggregation [Nath et al. 2004] and the creation of fields
[Beal et al. 2012], both necessary to support physically-inspired self-organized
coordination patterns;

—Decay, which mimics a sort of chemical evaporation and is necessary to garbage
collect data, as well as to ensure evolvability of services via disappearing of ser-
vice descriptions. In addition, along with spread and aggregate, decay makes it
possible to realize pheromone-like data structures [Holldobler and Wilson 2009]
and thus stigmergic coordination patterns [Babaoglu et al. 2006].

3.3 Operational Architecture

The SAPERE middleware (as represented in Figure 2 and more deeply detailed in
Section 6) implements the spatial substrate in terms of a set of data spaces (“LSA
spaces” – to be practically realized via tuple space technologies [Eugster et al. 2003])
distributed on the nodes that form the actual network infrastructure. Both small
mobile devices (e.g., smart phones) and fixed infrastructural nodes (e.g., pervasive
interactive displays) can host an LSA space, devoted to store the LSAs of local
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Fig. 2. The SAPERE operational architecture.

agents. LSA spaces dynamically network with each other according to their spatial
relations, and on the basis of spatial strategies that can be configured within the
middleware. Such strategies affect how LSAs flow and propagate from one space
to neighbor ones.

On each node, specific processes execute on the LSA space to analyze the current
status of LSAs and to trigger eco-laws, in the form of a set of rules that determines
how and when to bond, aggregate, decay, or diffuse to which neighbor nodes the
LSAs of that node.

From the agents’ viewpoint, whenever an agent approaches a node or is created
on it, an LSA it is automatically injected into the LSA-space of that node, making
the component part of that space and of its local coordination dynamics. When
a component moves away from a node, its LSA is eventually removed from that
space, and possibly re-connected to one of the neighbor LSA spaces (if the associated
component has moved accordingly). Agents can exploit a specific API in order to
update their own LSAs, inject additional LSAs, and subscribe to local events such
as the modification of some LSAs or the enactment of some eco-laws.

4. THE SAPERE COORDINATION MODEL

This section details the nature-inspired coordination model dictating how LSAs are
shaped and how eco-laws act on them. Code examples will be presented to clarify
the concept expressed and to show how to actually program SAPERE applications.

In particular, we focus on an exemplary pervasive computing application scenario:
information and guidance services in a smart museum. In this scenario, users
provided with smartphones and tablets visit a museum equipped with a network
and sensor infrastructure. Mobile apps running on the smartphones interact with
the museum infrastructure and possibly with other users to acquire information
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and to provide navigation, guidance, entertainment and coordination services. The
system is assumed to be able to localize users within the museum [Gu et al. 2009].

4.1 LSA - Live Semantic Annotations

Any component that takes part in a SAPERE ecosystem has to be represented by
at least one LSA to be injected in the local LSA space at creation time. However,
any agent can inject multiple LSAs during its lifetime. Such LSAs are linked to
the corresponding agent and can reflect in real time some of its internal variables,
enabling the agent to take part of the dynamics of the ecosystem. All the agents
in our museum scenario will be represented via LSAs.

LSAs are realized as descriptive tuples made by a number of fields in the form
of “name = value” properties, and possibly organized in a hierarchical fashion: the
value of a property can be a property again. The detailed description of LSA’s
semantic representation is not in the scope of this paper and can be found in
[Stevenson et al. 2012].

By building over tuple-based models and extending upon them [Gelernter 1985],
an LSA value can be actual, yet possibly dynamic and changing over time (which
makes LSAs living entities) or formal, not tied to any actual value unless bound to
one and representing a dangling connection (represented by the symbol “?”).

Concerning the dynamic fields of LSAs, the idea behind the programming model
is that each agent, other than taking care of injecting any needed LSAs, will also
take care of keeping the values of such LSAs updated (possibly by spawning internal
threads to this purpose). An agent can access and modify only the fields of its
own LSAs, but it can also read the LSAs to which has been linked by an eco-
law. Moreover LSAs can be accessed and modified by eco-laws, as explained in the
following sections.

Pattern matching between LSAs is the mechanism at the basis of eco-laws trig-
gering. A match between two LSAs takes place when the actual values of all the
properties with the same name (or, more in general, of those properties whose con-
cepts match according to some ontology [Stevenson et al. 2012]) correspond, or
when an actual value corresponds to a formal value. More specifically, two values
of a property match depending on whether they are formal or actual as from the
matrix in Table I (the concept of potential value is explained a bit later).

We emphasize that, unlike in traditional tuple-space coordination models [Gel-
ernter 1985], SAPERE does not distinguish between tuples and anti-tuples (or
templates), and a unique injectLSA API method subsumes the read/write opera-
tions of that models. This behavior is provided by the specific way of operating of
the bond eco-law, as described in the following subsection.

For example, to model temperature sensors embedded in the smart museum
scenario, we can consider the following LSA: (sensor- type = temperature;

accuracy = 0.1; temp = 45). Such an LSA can match the following one: (sensor-
type = temperature; temp = ?), expressing a request to acquire information
about the current local temperature. For instance, such request LSA could come
from a service in need to estimate the comfort level in the museum’s rooms. We
emphasize that further properties presented in the first LSA (e.g., accuracy) are
not taken into account by the matching function, which considers only inclusive
matches.
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Table I. Pattern matching rules in SAPERE.

Actual Formal Potential

Actual Y Y N

Formal Y N Y

Potential N Y N

4.2 SAPERE Programming

Programming a SAPERE application consists in developing a set of agents interact-
ing with each other, and possibly with other agents existing in the ecosystem to meet
specific the application goals. Agents are typically distributed among user devices
(e.g., packing them in a mobile app) and among other pervasive computing ele-
ments deployed in the environment. In SAPERE, we enforce a notable separation
of concerns between an application’s computation and interaction/coordination.
Computation (i.e., the main application business logic) is coded in the SAPERE
agents using standard software engineering methodologies. Interaction and coor-
dination consists in writing agents’ LSAs, and let the eco-laws managing their
evolution over time, and possibly promoting spontaneous service interactions and
composition.

Two agents interact by reading each other’s LSAs. In particular, agents express
in their LSA the fact that they wish to bind with other LSAs. On the basis of
the pattern matching mechanism described in Section 4.1, eco-laws will bind two
matching LSAs. The execution of eco-laws triggers callback functions in the agent
code, so that the application business logic can be realized.

Figure 3 shows an exemplary SAPERE agent. TempSensorAgent is an agent as-
sociated with a temperature sensor in the museum. The agent publishes the current
temperature value via its LSA. In addition, it tries to connect to another sensor
providing information about the level of CO2 in the room to estimate a comfort pa-
rameter for the visitors. To support the programmer we developed a SapereAgent

class to be sub-classed to create actual application agents. This class masks all the
interactions with the SAPERE middleware and provides simple methods to create
and update an LSA (setInitialLSA(), updateLSA()), and callback methods to be
overwritten appropriately (e.g., the onBond() method that is called when eco-laws
create new bonds, which is one of many callback methods of the API to handle
the events occurring in the LSA space as induced by the eco-laws). The method
setInitialLSA() of the API is called by the super constructor and sets the values
of the LSA (lines 3-9). It is worth emphasizing that the agent expresses the need
to connect to a CO2 sensor by adding a formal ”?” value associated with the co2

property (line 9). The run() method (lines 16-21) is also called at the end of the
super constructor and executes the main agent code. In this example the agent
periodically reads the temperature sensor and updates the LSA accordingly. The
onBond() method (lines 25-31) is called once an eco-law connects this agent to a
CO2 sensor via the pattern matching mechanism described in Section 4.1. Once
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1. public class TempSensorAgent extends SapereAgent {
2.
3. // the agent simply has to initialize the initial LSA
4. // called ‘myLSA’ with the desired fields
5. public void setInitialLSA (){
6. myLSA.addProperty("sensor-type", "temperature");
7. myLSA.addProperty("accuracy", 0.1);
8. myLSA.addProperty("temp", readTemp());
9. myLSA.addProperty("co2", "?");
10. }
11. // then the constructor of the SapereAgent, after having connected with the local LSA space,
12. // will automatically inject there such LSA as follows:
13. // lsas = bindLSASpace();
14. // injectLSA(new myLSA());
15.
16. run() {
17. while(true) {
18. // this cycle reads a new value and updates myLSA
19. sleep();
20. String ts = Float.toString(readTemp());
21. updateLSA("temp", ts);
22. }
23. }
24.
25. public void onBond(Event e) {
26. double co2 = e.getLSA().getProperty("co2");
27. // the Event object contains a copy of the bound LSA
28. // from which one can access the internal information
29. double comfort = compute(readTemp(),co2);
30. print("current comfort = "+ comfort);
31. myLSA.addProperty("comfort", comfort);
32. }
33. }

34. public class CO2SensorAgent extends SapereAgent {
35.
36. public void setInitialLSA (){
37. myLSA.addProperty("sensor-type", "co2");
38. myLSA.addProperty("co2", readCO2());
39. }
40. run() {
41. while(true) {
42. sleep();
43. updateLSA("co2", readCO2());
44. }
45. }
46. }

Fig. 3. An exemplary TemperatureSensor agent that publishes the current temperature value

via its LSA, and connects to a CO2 sensor to compute a comfort parameter for the visitors. An
exemplary CO2Sensor agent reading CO2 information and publishing it via LSA.

the bond is established interaction can proceed: the agent reads CO2 information
from the other LSA and computes the comfort parameter. Such information can be
printed in a user interface and published in the LSA for others to use (lines 31-32).

For completeness, we present also (lines 34-46) the code of the CO2SensorAgent

reading CO2 information via the readCO2() method and updating its LSA accord-
ingly. This LSA will match with the LSA of the TempSensorAgent to enable it
reading information about the CO2 level.
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4.3 The Eco-laws Based Coordination

The eco-laws trigger reactions in the ecosystem once matches among LSAs occur. In
particular, eco-laws operate on the pattern-matching schema described in Section
4.1. They are triggered by the presence of LSAs matching with each other and
manipulate such LSAs (i.e., the fields within) according to a set of coordination
rules [Zambonelli and Viroli 2011] (see below).

4.3.1 Bond Eco-law. The bond eco-law realizes a link between LSAs, whenever
two LSAs (or some sub-descriptions within) match. This is the primary form of
interaction among agents in SAPERE within the same LSA space. In particular,
it can be exploited to locally discover and access information, as well as to get in
touch and access local services.

The bond eco-law is triggered by the presence of formal values in at least one
of the LSAs involved. Upon a successful pattern matching between the formal
values of an LSA and actual values of another LSA, the eco-law creates the bond
between the two. In the example in Figure 3, this happens between the LSA
(sensor- type = temperature; accuracy = 0.1; temp = 45; co2=?) of the
TemperatureSensor agent, and the LSA (sensor- type = co2; co2=10) of the
CO2Sensor agent. The link established by binding in the presence of the “?” formal
field is bi-directional and symmetric. Once a bond is established, the agents holding
the LSAs are notified of the new bond, can trigger actions accordingly and read
each other’s LSAs. This implies that once a formal value of an LSA matches with
an actual value in another LSA it is bound to, the corresponding agent can access
the actual values associated with the formal ones. If more LSAs match with a given
formal value, then one match is randomly selected. Bond disruption takes place
automatically whenever some changes in the actual values of some LSAs make the
matching conditions no longer valid.

SAPERE also makes it possible to express a “*” formal field, which leads to a
one-to-many bonds with multiple matchings LSAs. This is used to read all the
LSAs matching a given signature.

Moreover, the ! formal field – which we call “potential” formal field – expresses
a field that is formal unless the other ? field has been bound. This makes possible
for an LSA to express a parameterized service, where the ? formal field represents
the parameters of the service, and the ! field represents the answers that it is able
to provide once it has been filled with the parameters.

For example the TempSensorAgent described before could have an LSA in the
form: (co2 = ?; comfort = !) expressing that if it gets information about the
CO2 level - as input, it can provide a comfort value output. Another agent could
have an LSA in the form (co2 = 4; comfort = ?). This would trigger a reaction
that automatically would complete all the formal fields in the two LSAs. With this
regard, we emphasize that the bond eco-law can be used to enable two agents to
discover each other, and exchange information with a single operation. Moreover,
in the case of the ! field, it also allows to automatically invoke a service. That is,
unlike in traditional discovery of data and services, it allows to compose services
without distinguishing between the roles of the involved agents, and subsuming the
traditionally separated phases of discovery and invocation.
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4.3.2 Aggregate Eco-law. The ability of aggregating information to produce
high-level digests of some contextual or situational facts is a fundamental require-
ment for adaptive and dynamic systems. In fact, in open and dynamic environ-
ments, one cannot know a priori which actual information will be available (some
information sources may disappear, others may appear later, etc.), and mechanisms
to extract a summary of all available information without having to explicitly dis-
cover and access the individual information sources are very important. To this
end, an agent can inject an LSA with two specific aggregate and type properties.

The aggregate eco-law is triggered by those properties. It selects all the LSAs in
the local space having a (numerical) property equals to the property type. Then
it computes an aggregated value of those numerical properties on the basis of the
aggregate value that identifies a function to base the aggregation upon (e.g., maxi-
mum, average, etc.). For example the LSA: (aggregation-op = max; property =

temp) triggers the aggregated eco-law to compute the maximum of the temp values.
If the in the LSA space, there are the LSAs (temp = 10) and (temp = 20), the
aggregate eco-law would produce an LSA (type = aggregate; aggregation-op

= max; temp = 20).
In the current implementation, the aggregate eco-law is capable of performing

most common order and duplicate insensitive (ODI) aggregation functions [Nath
et al. 2004; Jelasity et al. 2005], i.e., those functions whose results are indepen-
dent from the order by which data is aggregated and from the possible multiple
accounting of the same data items.

The aggregate eco law supports separation of concerns and allows to re-use pre-
vious aggregations. On the one hand, an agent can request an aggregation process
without dealing with the actual code to perform the aggregation. On the other
hand, the LSA resulting from an aggregation can be read (via a proper bond) by
any other agent that needs to get the pre-computed result. Even more importantly,
aggregation can work in combination with the spread eco-law (see later) to trig-
ger aggregation in a fully distributed and decentralized environment, and without
having to deploy specific aggregator agents in remote nodes.

4.3.3 Decay Eco-law. The decay eco-law enables the vanishing of components
and information from the SAPERE environment. The decay eco-law applies to all
LSAs that specify a decay property. This property expresses the remaining time
to live of the LSA. Once the time to live expires, the LSA is automatically removed
from the space. For instance the following LSA: (sensor-type = temperature;

temp = 10; decay=1000) makes the LSA to be automatically deleted after 1000
time units.

The decay eco-law is a kind of garbage collector capable of removing LSAs that
are no longer needed in the ecosystem or no longer maintained by a component.
On the other hand, for components that maintain a LSA, it is always possible to
access the decay property and eventually increment its value in order to prevent
the removal of the LSA. Similarly to what happens for aggregation, the decay
eco-law enables distributed garbage collection of distributed LSAs without having
to deploy in the various nodes of the system agents specifically devoted to that.
This ensures the sustainability of the overall ecosystem. In addition, the decay
function is necessary to support the realization in SAPERE of many nature-inspired
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interaction patterns that rely on the spatial environment to actively play a role in
making information (e.g., pheromones) to evaporate or be reinforced.

4.3.4 Spread Eco-law. The above presented eco-laws basically act on a local
basis, i.e., on a single LSA space. However, the SAPERE model is distributed, and
in particular it is grounded on interactions across a set of LSA spaces networked
with each other according to some strategies (e.g., spatial proximity). Accordingly,
eco-laws should also take care of ruling spatial distribution of LSAs and, accordingly,
non-local interactions.

The “spread” eco-law, aims at enabling the diffusion of LSAs from one LSA space
to neighbor ones, according to the concept of neighborhood defined by the topology
of connections of LSAs spaces. The most basic usage of the spread eco-law is to
search for components that are not available locally, or vice versa, to enable the
remote advertisement of services. However, it is also a fundamental mechanism
to support the creation of dynamic distributed data structures in support of self-
organization.

For an LSA to be subjected to the spread eco-law, it has to include a diffusion

field, whose value (along with additional parameters) defines the specific type of
propagation. Two different types of propagation are implemented in SAPERE:

—direct propagation, a unicast that propagates an LSA to a specified neighbor
node, e.g., (...diffusion op=direct; destination=node x; ...);

—spatial diffusion, a multicast that propagates an LSA to all neighbor SAPERE
nodes, e.g., (...diffusion op=general; hop=10; ...), where the hop value
can be specified to limit the distance of propagation of the LSA from the source
node.

General spatial diffusion of an LSA via the spread eco-law to distances greater
than 1 is a sort of point-to-point broadcast that clearly induces a large number of
replicas of the same LSA to reach the same node, multiple times, from different
paths. Indeed the general diffusion, to prevent this, is typically coupled with the
aggregation eco-law so as to merge together multiple copies of the same LSA that
arrive on a node from different paths.

It is also worth noting that application components can use the direct propagation
primitive to implement any kind of local communication scheme. For example,
gossip-based information diffusion [Jelasity et al. 2005] can be easily implemented
on top of direct propagation by letting an agent to communicate directly with a
random subset of neighbor nodes.

5. FROM ECO-LAWS TO SELF-ORGANIZATION PATTERNS

The defined eco-laws form a limited yet highly expressive set via which is it pos-
sible to realize a large variety of nature-inspired, self-organizing and self-adaptive,
coordination patterns.

5.1 Artificial Chemistries and Immune Systems

SAPERE allows to naturally model and express artificial chemistries’ and immune
systems’ models. The chemical/immune-system population can be directly repre-
sented by LSA, whereas the bond eco-law can effectively model chemical reactions
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and gene-antigene interactions [Fernandez et al. 2014; Read et al. 2012]. In addi-
tion, as discussed in the following, the combinations of eco-laws allow to model also
other self-organizing mechanisms highlighted in Section 2.1.

5.2 Fields

Aggregation applied to multiple copies of diffused LSAs can reduce the number of
redundant LSAs so as to form a distributed field structure [Mamei and Zambonelli
2009]. A field data structure is distributed across the nodes of the network, each of
these nodes containing a copy of the LSA storing the hop-distance from the node
of the network that created and injected it (see Fig. 4).

In general, field data-structures are a useful tool to encode and spread information
in a distributed system. The main point of using them is that they effectively
provide adaptive spatial awareness to agents. Fields in fact naturally provide a
measure of distance in the network (by means of hop count from the source) and of
the direction from where the information comes from (by considering the slope of
the hop counts). Such kind of information is very useful in a number of pervasive
applications that are closely coupled with the location of the agents.

For example, an agent monitoring a room of the museum that is fresh and not
crowded could propagate a field data structure allowing other agents to sense that
room and get information about how far it is located (see Figure 4).

The spread eco-law propagates the LSA hop by hop across the network. In
particular, the keyword general specifies to recursively propagate the LSA by n
hops, aggregation op specifies how to aggregate the copies of the LSA. Spreading
also maintains hop count to indicate the number of hops from the source, previous
to indicate from which node the field LSA comes from and spread id to identify a
specific field. The aggregation eco-law guarantees that redundant LSA copies are
discarded and the field is properly laid out. SAPERE allows to realize this pattern
effectively by moving all the burden to the eco-laws. For example the following
LSA: (diffusion-op = general; hop = 10; aggregation-op = min) would be
spread a field data-structure like the one in Fig. 4 by 10 hops.

Another agent can query for fields propagated by the room and being notified
with information regarding the presence, the distance to the room, and, by using
the previous data of the field, the approximate direction where the room is located.

It is important to notice that since the field is constructed on the basis of “ever-
running” eco-laws, its global “shape” - the values of the hop counts across the
network - is periodically refreshed to accommodate network churn, agents move-
ments, and changing configuration of the entities involved. This fact makes the
field and the agent’s spatial awareness adaptive to changing conditions.

5.3 Stigmergy and Pheromone-based Data structures

Fields can be the basis to construct pheromone-like data structures driving agent
activities [Babaoglu et al. 2006]. These data structures, mimicking pheromone trails
in natural systems like ant colonies, are deployed in a distributed environment by
mobile agents, and provide local information on how to explore the distributed
environment. For example, a user agent finding some interesting information can
start spreading a pheromone trail to allow other agents to easily reach the source
(e.g., art piece) of that information, by following the trail.
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Fig. 4. Generating and navigating distributed data structures. The Room agent uses the spread

eco-law (1) to propagate its LSA to neighbor nodes which, at their time, re-propagate a copy
(2) to other nodes. Once multiple copies of the same LSA reach the same node, the aggregation

eco-law preserves the copy with minimum hop number (3). This process creates field-like data

structures that the User agent can read to get information about the presence and approximate
location of the room.

Pheromones can be realized via LSAs locally deposited by agents as they move
across the network, accordingly, such LSAs would be deployed on the agents path.
Pheromone LSAs would be also associated with the decay eco-law to emulate
pheromone evaporation. We do not report code example of this pattern in that
it simply results by adding a decay property to the LSAs described for creating
fields and by notably limiting the hop radius at which the field can propagate – or
by removing propagation entirely – to obtain a pheromone trail that is stored only
in the nodes actually visited by the agent.

5.4 Distributed Self-organized Aggregation

Spreading and aggregation can be used together to produce distributed self-organized
aggregation, i.e., computing in a distributed way the value of some properties of the
system (i.e., the average temperature measured in the museum’s sensor network)
and have the results of such computation available at each and every node of the
system, as from [Nath et al. 2004]. This mechanism is also at the basis of leader
election algorithms via which to realize forms of distributed consensus, distributed
task allocation and behavior differentiation [Bicocchi et al. 2012].

To ground the discussion, we illustrate how to trigger distributed self-organized
aggregation of sensorial data. An employee in the museum wants to see in a display
the maximum temperature sensed in the museum. In this example the Aggregator

LSA is spread by a node to compute, in a distributed way, the maximum value
of the “temp” property of LSAs available in the network (in this example, mea-
sured by a pool of sensors) and to show such a value on the display. For example
the following LSA: (property = temp; aggregation-op = max; diffusion-op

= general; hop = 10) would perform a distributed aggregation like the one de-
picted in Fig. 5.
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Fig. 5. Distributed aggregation. The Aggregator agent’s LSA is spread over the network (a.1),

to be aggregated with other LSAs (in this example from the TemperatureSensor agents) over
the “temp” property (a.2). The result of aggregations is spread to other nodes (b.3) and then

aggregated again (b.4) providing the Aggregator agent with the maximum “temp” value in the

network. The final result can be presented on a suitable monitor display.

In particular, the assertion aggregation op = max from one side aggregates LSAs
around the property type “temp”, from another side allows multiple copies of the
same LSA to be aggregated and routed back to the source. Also in this case, all
the complexity is moved at the middleware level via the eco-laws.

The same kind of approach can be used to realize gossip-based aggregation mech-
anisms [Bicocchi et al. 2012]: instead of propagating an LSA to all the neighbors,
the LSA is sent only to a random subset of them. Probabilistically, this results in
the same globally coherent behavior, but with less messages being exchanged.

In general, this kind of LSA aggregation supports situation-awareness in the sys-
tem. In fact, it allows different information elements (e.g., sparse sensor readings)
to be combined together into an higher-level representation of the current state in
the environment (e.g., summary statistics on the sensed values).

5.5 Self-Organizing Spatial Coordination

Several different classes of self-organized spatial and motion coordination schemes,
self-assembly, and distributed navigation can be expressed in terms of fields and
pheromones.

In these approaches a number of field and pheromone data structures are laid
out over the pervasive network. Agents coordinate their activities and movements
on the basis of the local shape of such structures.

For example, field data structures can be used to coordinate the motion of people
in the museum. Agents running on users’ smart phones could give them directions
by following the gradient of the fields in the environment. Considering the example
in Figure 4, the agent could guide the user to the room by letting him/her follow
the field of the room LSA (i.e., iteratively directing the user to the node associated
with the previous variable). The strength of this approach resides in the fact that
motion guidance is based on strictly local information (the local shape of the field)
and is adaptive to changing conditions (e.g., a corridor made unaccessible) as the
field would reshape accordingly.
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Fig. 6. The SAPERE Middleware Architecture

A similar approach can be used to allow different entities to leave pheromone trails
in the museum to be followed later on by users or robots [Mamei and Zambonelli
2007]. A final relevant example consists of the spatial computing approach [Beal
et al. 2012]. Also in this context, agent activities are driven by fields spread in
an ad-hoc network of nodes. For example, a node can inject a field representing
a query. Replying nodes can send a message (LSA) to the requestor by routing
it following the gradient of the query field (this kind of gradient routing is often
referred to as chemotaxis). Extending this principle, even more complex patterns
and behaviors can be flexibly realized.

6. THE MIDDLEWARE IMPLEMENTATION

From an implementation-oriented viewpoint, the SAPERE middleware reifies LSAs
in the form of tuples, to be dynamically stored and updated in a system of spatially-
situated tuple spaces spread over the network devices.

On each node on which the SAPERE middleware is instantiated, it consists of
three man components (see Figure 6):

—the LSA space, where local LSAs are stored and manipulated by the eco-laws;

—the Notifier, that manages events happening to LSAs and notifies the applica-
tions;
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—the Networking, that builds and maintains the network topology, and rules the
LSAs exchange with other nodes.

Possibly, additional libraries of agents could be deployed to enrich services offered
by the middleware. In addition the SAPERE external interfaces, to ease the ap-
plication programming, offer several programming agent templates facilitating the
whole LSA life-cycle management. For instance the SapereAgent used in the code
examples features seamless invocation of the middleware API.

6.1 The LSA space

The LSA space is realized as a lightweight tuple space that stores local LSAs and
executes eco-laws over them. The core component is the Space that stores LSAs
and provides access to them. The Operation Manager and the Eco-laws engine get
mutual access to the Space to submit operations and execute eco-laws respectively
over the LSAs collection.

The Operation Manager is used to submit operations to the Space, they are the
operations that realize the basic SAPERE API (injectLSA, updateLSA, onBond,
onBondUpdate). During the the operation execution the Operation Manager, for
each submitted operation, interacts with the Notifier, adding or removing subscrip-
tions to events and/or triggering new ones. Operations, in particular, are managed
in two different ways: operations coming from external API are queued and passed
to the Space one by one, operations coming from the Eco-laws Engine, instead, are
executed as they arrive.

The Eco-laws Engine gets periodically activated to execute eco-laws on the collec-
tion of locally stored LSAs. To keep the bonds between LSAs consistent, a routine
removing no longer valid bonds is run every time an update, or a remove operation
is executed on the Space.

Therefore, at each wake-up the engine will process:

—non diffusive eco-laws in the following order: decay, aggregate, bond. That is, eco-
laws that can possibly remove LSAs (e.g., the decay eco-law can remove an LSA
that is decayed) are prioritized and managed in a finite state fashion, proceeding
iteratively until applicable to a steady point in which no more aggregations are
possible;

—the spread eco-law, executed once for each LSA requiring diffusion.

6.2 The Notifier

The Notifier component takes care of managing events happening to LSAs (e.g.,
bonds established, bonds removal, etc.) and notifying the Agents in charge of their
management. This includes taking care of:

—events to be notified, for instance an Event related to the happening of a bond will
be forwarded to one of the following methods: onBond to represent the happening
of a new bond, onBondUpdate to represent the happening of some update in the
content of an already bound LSA, onUnbond to represent the happening of the
removal of a bond;

—subscriptions, to record the interest of a subscriber to a particular event. Sub-
scriptions are managed automatically by the middleware and are not demanded
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to the application programmer, in particular they are managed both by the Op-
erationManager as operations are forwarded to the Space, and by the Agent that
manages the LSAs for the onBondUpdate;

—filters responsible for discarding events not of interest for a subscriber. When an
event occurs, the Notifier component determines which subscriber is interested
in this event, applying the filter provided by the subscriber.

Events are fired by the Space object when operations on LSAs are performed.
For each fired event, the Notifier checks if there are Subscriptions for that Event
class and invokes the filters to detect the specific subscriber that shall be notified.

6.3 The Networking

The Networking module manages interactions with other SAPERE nodes. This
implies two separate networking tasks:

—communicating with other nodes to exchange (spread) LSAs. To this end the
Network Communication Manager provides two modules called respectively “Re-
ceiver” and “Transmitter” enabling communication between SAPERE nodes.
Their actual implementation is based over standard Java Tcp/Ip sockets (how-
ever we have also tested over Bluetooth PAN/BNEP) and the Network Com-
munication Manager might be easily extended to support other communication
protocols;

—building and maintaining a topology of the network. In SAPERE, each node in
the environment is made aware of one hop neighbors, and can communicate only
with direct neighbors to exchange LSAs. This is realized by the local Network
Topology Manager, which can easily support custom overlay networks by manag-
ing the resulting topology according to a specified policy. In particular, we have
tested topologies based on both spatial proximity (defining an overlay network
for nodes that are in a connectivity range as supported by the Bluetooth tech-
nology available on common smartphones) and on logical proximity (defining a
overlay network that is based on the distance between entities linked to an exter-
nal social network, e.g. Facebook). We have also considered mixed approaches
as the result of crossing together the previous ones to identify as neighbors only
those nodes that are in both social and physical proximity, as better described
in [Zambonelli et al. 2011]..

The process of managing the topology of the network is distributed on each node,
where the local Network Topology Manager, depending on the node configuration,
instantiates a number of processes to build the network topology based on the
chosen spatial model.

6.4 Launching SAPERE Applications

The SAPERE middleware has been developed in Java language, sources and bina-
ries are available at www.sapere-project.eu/download. While on traditional personal
computers SAPERE comes bundled over a Java Jar file to be linked to application-
specific agent class, an optimized Apk bundle has been developed to be used on
Android mobile devices.
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Fig. 7. Screenshots from the Android SAPERE App. (left) The launch icon to be pushed on the
Android springboard to start SAPERE and have that device to become a node of the ecosystem.

(center) The user is presented a menu of the locally available SAPERE services; launching one

of them brings to life the associated agents and their LSAs. (right) the GUI of a simple test
application for inspecting the LSA space.

In general terms, launching the SAPERE App implies starting a local instance
of the SAPERE middleware (which, depending on the configured networking strat-
egy, will start looking for other SAPERE nodes to connect to, or will accept new
connections) and presenting the users with a menu of the locally available SAPERE
services. To add new services on a node, the developer has to produce the corre-
sponding agent classes and link them to the SAPERE jar/bundle.

Figure 7 depicts and explains three exemplary menus from the Android version.

7. EXPERIMENTAL EVALUATION

The effectiveness of the SAPERE model and middleware has been evaluated along
two main aspects: on the one hand, we performed a software engineering evalua-
tion trying to assess whether SAPERE supports and facilitates the development of
self-adaptive pervasive systems. On the other hand, we performed a performance
evaluation trying to assess whether the SAPERE middleware can support a number
of pervasive application with limited overhead.

7.1 Software Engineering Evaluation

To understand the effectiveness of the SAPERE model in developing pervasive ap-
plications, we tried to model some exemplary use-case applications both in SAPERE
and in a FIPA-compliant agent-based middleware (MalacaTiny-Sol [Ayala et al.
2012]) in order to assess strengths and weaknesses of our system. In this section we
report a specific case of a general analysis we described in [Ayala et al. 2013]. In
particular, we model an emergency exit application in the smart museum scenario.
In this application users are guided across the museum toward the closest/less
crowded exit. It is assumed that a number of agents is running in the museum:
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there are tourist agents associated to each visitor, and security agents associated
to monitoring emergency and crowding conditions within the museum.

—Design with SAPERE. This modeling approach takes advantage of the uncoupled
interactions among the agents. When an emergency is detected, security agents
associated to exits propagate a LSA spreading across the building, and creating
a field (or pheromone trail) leading to the exit. The shape of such a field can
be influenced by the crowd distribution in the museum (computed via the aggre-
gation eco-law). Tourist agents follow the resulting field downhill to reach the
closest exit.

—Design with FIPA Agents. This modeling approach takes advantage of multicast
communication among the agents. When an emergency is detected, the security
agent notifies all the tourist agents about the situation. Tourist agents, provided
with intelligent capabilities - and possibly requesting to other agents about the
crowd distribution in the museum, plan the optimal route to the closest exit. An
important strength of this system is that all the above behaviors can be flexibly
encapsulated (e.g., via aspects or rule-based engines) to realize the agent code.

From a general perspective, this exemplary application highlights some key ar-
chitectural features of SAPERE and FIPA agents. The differences of the two ap-
proaches for the development of pervasive application come not only from their
schemas of interaction (LSA-spaces in SAPERE vs. message-passing in FIPA),
but also from their mechanisms to support separation of concerns (i.e. eco-laws
in SAPERE vs. agent functional behaviors in FIPA) and how they adapt the
agent paradigm to pervasive computing (e.g. uncoupled interactions in SAPERE
vs. multicast communication in FIPA).

More in detail, we highlight the following advantages of the two approaches.

—SAPERE Advantages. SAPERE agents have a good capacity for separation of
concerns, components’ decoupling and cohesion, and robustness. In the SAPERE
LSA-based approaches - like in tuple spaces’ - the service provision and consump-
tion is more efficient than in FIPA ones because a direct interaction between
agents is unnecessary. The negotiation is done in the LSA spaces via a pat-
tern matching process that avoids message exchange. The distributed nature of
SAPERE applications results in systems that adapt easily to changes in the phys-
ical space where the application is distributed. Finally, SAPERE spaces offers a
more robust infrastructure thanks to its multiple SAPERE nodes. This is not a
common feature in tuple based approaches but it is one of the strongest points
of SAPERE.

—FIPA Advantages. In FIPA, the design of the agents is more scalable (in terms of
complexity increase due to additional features) and can ensure the privacy of users
more easily. In fact, FIPA-based approaches focus on the programming of agents’
interval behavior. Accordingly they allow the set of services offered by the agents
to be modified more easily. Some FIPA systems can do this at runtime because
agents’ behaviors can be encapsulated in aspects or sets of rules. Additionally,
because the computing is encapsulated inside agents the risk of lateral effect
when the system is extended is lower than in tuple based approaches and also in
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SAPERE. Finally, in FIPA-based approaches it is somewhat easier to ensure the
privacy of users, because most of the computation is performed locally.

Overall, the results from this analysis show that SAPERE effectively supports the
development of adaptive pervasive applications with regard to interaction and dis-
tributed coordination, especially in the case of spatially-related tasks in which fields
and distributed aggregation are most useful. From this perspective, we think that
SAPERE fulfills its goal of supporting and facilitating adaptive pervasive systems.

Viceversa other platforms - like the considered FIPA-based system - better sup-
port agents’ “internal” coding, agents planning and intelligent behaviors.

In general the two approaches could be combined with benefits to both. The
functional behaviors of FIPA agents would simplify the deployment of complex
agents in SAPERE. The main benefits for SAPERE would be to enhance the in-
ternal modularization of agents deployed in SAPERE nodes, to promote reuse and
ease the adaptation of agents even at runtime.

7.2 Performance Evaluation

From the performances viewpoint, we have evaluated three main aspects: (i) local
resource utilization (ii) time performances involved in running the eco-laws locally
to a node; (iii) distributed overhead in supporting LSA spreading and aggregation
across a network of SAPERE nodes.

From our investigations, the key parameter impacting on the performances of
the SAPERE middleware is the number of LSAs populating the nodes. Indeed, the
higher the number of LSAs stored in one node, the heavier can be the matching
process involved in the LSA space engine to trigger eco-laws. Given the inherent
local nature of LSA spaces, and the fact that the number of LSAs on one node
expresses the number of local devices and service components on it – and to those
eventually diffused from neighbor nodes – we assume that such a number will never
grow excessively and set 2000 LSAs per node as an upper bound for our tests.

Experiments have been performed both on personal computers (Apple Mac-
bookPro 2011 – Intel 2Ghz I7 processor – 8GB of RAM) and on mobile devices
(Samsung Gt-P1000 running Android 2.3.6).

Local Resources Utilization. Table II illustrates local resources utilization of mem-
ory consumption and CPU usage at an increasing number of LSAs populating a
single node, both on a personal computer and on an Android device.

With regard to the memory footprint, our measure highlights that:

—the memory occupancy of the bare SAPERE middleware is about 4KB;

—the memory occupancy of each LSA we developed for our experiments is on aver-
age 0.5 KB. This amount accounts for the LSA object instance itself, the LSA’s
payload (that is application specific, in these experiments contains a temperature
measure) and the SapereAgent instance managing the LSA’s life cycle.

Our measures suggest that for reasonable numbers of LSAs per node (a mobile
unit will unlikely host more than a dozen of local services and sensors) the SAPERE
middleware is lightweight enough to be hosted on even small devices.

The memory footprint size has been estimated using the SizeOf library (sizeof.
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Table II. Local resources utilization on a node against the number of locally stored LSAs

LSAs M. Footprint PC CPU % Mobile CPU %

0 4 KB 1% 24%

100 55 KB 4% 30%

200 111 KB 5% 60%

500 249 KB 7% 75%

1000 488 KB 9% 90%

2000 1002 KB 18% 100%

sourceforge.net). The CPU usage has been measured with Oracle JConsole (in-
cluded in the Oracle JDK) and Google DDMS (included in the Google Android
JDK) on personal computers and Android mobile devices, respectively.

Time Performances. We analyze the time performances associated to the execution
of the SAPERE eco-laws. For each of the experiments we executed 1000 runs on
a personal computer and averaged the results. Similar trends, although with a
reduced number of runs, have been obtained also on Android devices.

Bond Eco-Law. We measured the time required to realize a bond between 2 LSAs.
We run the experiments by pre-injecting a number of LSAs and then by injecting
an LSA with the “?” formal value: Figure 8(a) reports the time occurring between
the injection of the last LSA and the notification of the bond event. For a number
of pre-injected LSAs lower than 2000, the binding time is below 10ms. The time
required grows linearly with the number of the involved LSAs since the current LSA
engine is not provided of a mechanism for LSAs’ indexing and quick verification
of pattern-matching. However, the performances appear perfectly acceptable with
respect to its reference context, in that completely compatible with average human
reaction time and also with the frequencies of contextual changes.

Aggregation Eco-Law. We measured the time required to aggregate a subset of
the LSAs populating the space. Results of this experiment (aggregating the 25%,
the 50% and the 75% of the LSAs in a node) are in Figure 8(b): the time required
by the aggregation is not affected by the percentage of the LSAs to be aggregated
but by the whole number of LSAs populating the space. Again, the lack of an
indexing mechanism for LSAs makes the execution of the aggregation eco-law to
require an exhaustive search over the whole LSAs space. Yet, the overall time is
still in line with the expectation of a large class of interactive application-level user
services.

Spread Eco-Law. We measured the round-trip time required to spread an LSA
from a source node to a destination node and to spread it back to the source, using
Wi-Fi connections as a career. The key parameters of this experiment are: (1) the
distance in hop-terms between the source and the destination, (2) the number of
LSAs populating each node. Results in Figure 8(c) show that the time linearly
increases with the hop distance, as the LSA needs to move across multiple nodes.
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Fig. 8. (a) Time for binding two LSAs. (b) Aggregation time with a growing number of LSAs

populating the space.(c) Round-trip time to spread an LSA to a remote node and to get a reply

back. (d) Time to decay a given LSA on the basis of the number of LSAs populating the space.

It also linearly increases with the number of LSAs because of the exhaustive search
applied to the LSAs population to detect those to be propagated. Although a
bit higher, and highly influenced by WiFi performances, also in this case the time
required appears acceptable from the application viewpoint.

Decay Eco-Law. In this experiment we measure the time required to remove an
expired LSA. For a varying number of LSA, we set one of them to be decayed after
5, 10 or 20 middleware cycles. Results of this experiment are in Figure 8(d) and
are in line with the other results involving an exhaustive search over the LSAs.

Distributed Overhead Evaluation. We measured the number of operations
required to propagate information as a field across SAPERE nodes. That involves
spreading LSAs from node to node and aggregating those multiple copies getting
the same node from different sources. Such a process requires time to converge and
repeated aggregations. In addition, to ensure the coherency of the field structure
despite network dynamism, the spread has to be periodically repeated.

Figure 9(a) shows the number of operations required to spread a field in a net-
work (a regular lattice with connectivity grade 4) of 100 SAPERE nodes tracing
the number of LSAs exchanged. The field quickly stabilizes, while the constant
increment of operations involved, even after convergence, is due to the field peri-
odic refresh. Figure 9(b) shows the effect of introducing a decaying factor in the
field: as soon as the decaying procedure completes, the field is removed from the
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Fig. 9. (a) Number of LSA exchanges required to propagate and maintain the field distributed
shape. (b) Number of LSA exchanges required once a decaying factor is introduced.

network and the number of operations drops to zero (thus allowing multiple fields
to be spread in the network without affecting performances in the long run).

Summarizing, the reported experimental results show that our current SAPERE
implementation – despite being highly un-optimized – is already compatible with
a large class of pervasive computing applications. In particular:

—The memory footprint and CPU usage have a limited impact enabling the effec-
tive deployment of SAPERE over mobile devices;

—The time for triggering and executing eco-laws allows for application-level reac-
tion times compatible with interactive pervasive applications;

—The time for spreading LSAs across a network is acceptable and compatible with
application-level expectations, and its overhead on the network is limited.

8. RELATED WORK

In the past few years, several proposals have tried to identify novel models and
mechanisms to support the design and development of pervasive service systems.

Many approaches, starting from service-oriented architectures [Huhns and Singh
2005], in the attempt to overcome the static and context-unaware mechanisms of
service discovery and composition, propose innovative mechanisms [Kalasapur et al.
2007; Bronsted et al. 2010] and associated middleware infrastructures [Raychoud-
hury et al. 2013]. These include novel approaches to context-aware discovery and
novel means to handle the dynamic arrival and dismissing of service components
[Bronsted et al. 2010] – there possibly included service re-location [Riva et al. 2007]
– and novel mechanisms to evaluate at run-time the most suitable service composi-
tion patterns depending on current context and availability of components [Kalas-
apur et al. 2007]. SAPERE, with the single mechanism of bonding, supports both
dynamic context-aware service discovery and composition. Also, SAPERE can sup-
port self-organizing patterns of distributed service compositions and orchestration,
and thus achieve high degree of adaptivity with little programming efforts.

Different threads of research explore solutions based on coordination modes pro-
moting weaker degree of coupling between service components than service-oriented
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architectures, e.g., event-based coordination models and tuple-based ones [Eugster
et al. 2003]. In particular, tuple-based coordination models, by expressively en-
abling both flexible communication and synchronization of activities, have been ex-
tensively exploited as a tool to coordinate service activities in mobile environments.
Proposals typically rely on networked tuple spaces spread across pervasive environ-
ments and mobile devices [Bellavista et al. 2012; Murphy et al. 2006; De Nicola
et al. 2014], possibly integrating mechanisms to dynamically re-configure the stan-
dard pattern-matching mechanisms of tuple spaces [Omicini and Zambonelli 1999].
SAPERE has been definitely inspired by tuple-space coordination models, but has
radically re-defined it with its concepts of LSAs and eco-laws.

TOTAM [Harnie et al. 2014] is a tuple-based infrastructure that addresses sce-
narios of pervasive computing very similar to those of SAPERE. In addition, again
similarly to SAPERE, it proposes exploiting sort of enhanced tuple spaces associ-
ated to pervasive devices to support localized spatial interactions in urban scenar-
ios, as well as information diffusion and propagation. However, unlike SAPERE,
TOTAM does not deal with the issue of supporting adaptive and self-organizing
coordination patterns, leaving up to application agents the duty of organizing their
own coordination schemes.

The concept of LSA of SAPERE shares some key characteristics and goals with
the concept of dynamic tuples proposed in [Stovall and Julien 2008], i.e., the idea
that dynamically changing fields in tuples can support adaptive context-aware dis-
covery of services. However, the LSA concept of SAPERE is embedded in a fully-
fledged framework where this concept finds practical and complete realization.

The TOTA system [Mamei and Zambonelli 2009], previously developed within
our research group, shares the idea of SAPERE of enabling the flexible program-
ming of self-organizing distributed coordination schemes. However, TOTA was
capable of supporting only self-organization mechanisms based on distributed com-
putational fields. SAPERE has a more general nature, being capable of supporting
fields but also more general mechanisms and schemes of self-organization, such as
pheromones, gossip schemes, distributed aggregation. Similar considerations apply
to other spatial computing models based on computational fields, like Proto [Beal
et al. 2012].

The concept of augmented ecologies [Tisato et al. 2012] shares with SAPERE
both the ecosystem inspiration and the idea of mapping components of a pervasive
environment into a virtual ecosystem of organisms interacting in a spatial and
context-dependent way. However, the augmented ecologies proposal does not aim
at supporting some specific adaptive coordination model, leaving up to application
components the duty of ruling their own coordination activities.

Chemical bonds have been proposed as a middleware mechanism to promote
spontaneous service and workflow in open environments [Banâtre and Priol 2009;
Fernandez et al. 2014]. Unlike SAPERE, though, such proposals do not integrate
the spatial mechanism required for decentralized pervasive environments. In a re-
cent work [Viroli et al. 2011], we have proposed a chemically-inspired coordination
model that, although not being coupled with a specific eco-laws model or imple-
mented middleware, can be considered our first attempt towards nature-inspired
pervasive service coordination.
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9. CONCLUSIONS AND FUTURE WORK

SAPERE proposes a radically new approach to engineer pervasive computing ser-
vices that suits the emerging characteristics of pervasive computing environments.
In particular:

—Its nature-inspired coordination model based supports spontaneous, context-
aware, and adaptive interactions among situated pervasive service components;

—A variety of adaptive self-organizing patterns can be enforced in SAPERE, to
realize several effective schemes for the provisioning of distributed pervasive ser-
vices;

—The SAPERE middleware effectively supports the SAPERE model and a variety
of networking schemes with acceptable performances.

Currently, we are working to improve some implementation aspects of the SAPERE
middleware, in particular to optimize LSAs storing and access, and to extend its
support for semantic data representation [Stevenson et al. 2012]. As a plan for
future work, we intend to experience the SAPERE approach with a number of in-
novative services in the area of urban computing [Harnie et al. 2014; Zambonelli
2012] and smart mobility services [Riener and Ferscha 2013].
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