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Socially Constrained Structural Learning for
Groups Detection in Crowd

Francesco Solera, Simone Calderara, Member, IEEE, and Rita Cucchiara, Fellow, IEEE

Abstract—Modern crowd theories agree that collective behavior is the result of the underlying interactions among small groups of
individuals. In this work, we propose a novel algorithm for detecting social groups in crowds by means of a Correlation Clustering
procedure on people trajectories. The affinity between crowd members is learned through an online formulation of the Structural SVM
framework and a set of specifically designed features characterizing both their physical and social identity, inspired by Proxemic theory,
Granger causality, DTW and Heat-maps. To adhere to sociological observations, we introduce a loss function (G-MITRE) able to deal
with the complexity of evaluating group detection performances. We show our algorithm achieves state-of-the-art results when relying on
both ground truth trajectories and tracklets previously extracted by available detector/tracker systems.

Index Terms—Crowd analysis, group detection, Structural SVM, Correlation Clustering, Proxemic theory, Granger causality.
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1 INTRODUCTION

C ROWD phenomena are complex and their logic still escapes
formal rules and precise social explanations. Eventually,

the ambition of crowd analysis is to characterize people
behaviors, predict and prevent potentially dangerous situations
and improve the well-being of communities. This has been
traditionally provided by simulation models [1] or automatic
video analysis [2]. Recently, groups have been recognized as
the basic elements which compose the crowd [3], leading to
an intermediate level of abstraction that is placed between
two outfacing views: the crowd as a flow of indistinguishable
people [4] and its interpretation as a collection of individuals [5].
Identifying groups is consequently a mandatory step to grasp
the complex social dynamics ruling collective behaviors in
crowds. This poses new challenges for computer vision,
since groups are definitely more difficult to characterize than
pedestrians acting alone or as a whole.

In this work, we propose a learning based solution for
visually detecting groups in low/medium density crowds (Fig. 1)
under the hypothesis that the concept of group can be visually
discerned and people trajectories can be extracted up to some
extent. The strong novelty of our approach is the joint adoption
of sociologically grounded features and a learning framework
able to specialize the concept of group accounting for different
scenarios, motion constraints and crowd densities. To this end,
we adhere to a classical sociological interpretation of groups [6],
which can be formalized as follows.

Definition 1. A group is defined as two or more people
interacting to reach a common goal and perceiving a shared
membership, based on both physical and social identity.

Accordingly, we propose a new formulation of the problem
of detecting groups in crowds as a supervised Correlation
Clustering (CC) [7]. We solve it through a Structural Support
Vector Machines (Structural SVM) [8] framework that learns a
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Fig. 1. Examples of social groups detected in crowds.

context dependent distance measure, based on a set of features
inspired by Def. 1 effective on both ground truth trajectories
and automatically obtained tracklets. The design of socially
grounded features is one of the main contributions of the work.

Moreover, a new socially based loss function (G-MITRE)
is defined for the Structural SVM. Differently from previous
solutions [9] and [2], our approach doesn’t rely on scene-
dependent parameters that would limit the applicability of the
method in real world contexts. Finally, we also propose an
online learning procedure that handles smooth variation in
crowd composition and density, useful in online surveillance.

We annotated and made publicly available two new datasets:
MPT-20x100 and GVEII (see Sec. 7). Results on standard
benchmarks, as well as on the proposed datasets, outperform
current methods. We strongly believe that an automatic system
for group detection will influence future public area visual
surveillance and will bring benefits to modeling and simulation
application for architectural planning by providing real and
precise data observation of crowds phenomena.

2 RELATED WORK
The modeling of pedestrian dynamics in crowds represents a
relatively recent research field. Most of the works are based on
sociological paradigms and computer vision based approaches
have also evolved under the influence of these theories.

Modeling and Observing the Crowd
Most of the research work has tried to tackle the crowd as
an exclusively collective phenomenon, where individuality
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does not exist. This recalls the primitive Popular Mind
Theory [10] by Gustave Le Bon, where the crowd was defined
as a “pathological monster with no individual consciousness”.
Accordingly, crowds have been analyzed by means of physical
models (e.g. hydrodynamics [4]), neglecting the existence of
single individual purposes and goals. However, these models
are effective mainly in extremely dense crowds. Conversely,
many other approaches have been inspired by the 70s Social
Loafing Theory [11], which stated that individuality was a
strong requirement for the pursuit of personal goals. Helbings
Social Force Model [5], which asserts that anyone movements
towards her goals are influenced by the surrounding pedestrians,
has been the main building block for many crowd modeling and
analysis works, ranging from abnormal behavior detection [12]
to tracking [13]. Recently, studies on people attending events
have underlined that most of the people tend to move in
groups and social relations influence the way people behave in
crowds [3], [14]. These empirical observations are supported by
Reicher in the recent Social Identity Model of Deindividuation
Effects [15], which assumes that crowd behavior is regulated
by the social rules and behaviors groups choose to adopt. This
is the main social paradigm underpinning our research too.

Visual Detection of Groups in Crowds
It was only recently that group detection showed promising
results. The process is in fact built upon several open chal-
lenges in computer vision, starting from people detection and
tracking in crowds [16] to analyzing and grouping extracted
trajectories [17].

Some works employ the concept of F-formations by
Kendon [18] to discern group formation process. Broadly
speaking, F-formations can be seen as specific positional and
orientational patterns that people must sustain in order to be
considered engaged in a social relationship. Despite robust
results [19], this theory is suited to stationary groups only
and is not defined for moving groups, a case which cannot be
ignored in crowd analysis.

Thus, complementary approaches analyze pedestrians motion
paths; according to the type of available tracklets, they
can be partitioned in group-based, individual-group joint
and individual-based. In group-based approaches, groups are
considered as atomic entities in the scene since no higher
level information can be extracted neatly, typically due to high
noise or high complexity of crowded scenes [20], [21]. Since
these models are often too simplistic to further infer on groups
behavior, individual-group joint approaches try to overcome the
lack of finer information by hypothesizing trajectories while
tracking groups at a coarser level [22], [23]. Finally, individual-
based tracking algorithms build up on single pedestrians
trajectories. This kind of approach has been gaining momentum
only recently since tracking even in high density crowds is
becoming everyday a more feasible task [16]. Pellegrini et
al. [9] employ a Conditional Random Field to jointly predict
trajectories and estimate group memberships, modeled as
latent variables, over a short time window. Yamaguchi et
al. [24] predict whether two pedestrians are in the same group
through a linear SVM on trivial distance, speed difference
and time overlap information. Recently, Chang et al. [25]

proposed a soft segmentation process to partition the crowd
by constructing a weighted graph, where the edges represent
the probability of individuals to belong to the same group. An
interesting unsupervised approach is Zanotto et. al [26], where
a potentially infinite mixture model is fitted on pedestrians,
regarded as sampled observations from the mixture. Previous
frames data and predictions are used as prior information for
the models (one for each group), but pairwise relations between
individuals are neglected as groups are modeled only through
the mean position and velocity of their members. Above all, we
mention Ge et al. [2] that suggests the use of an agglomerative
approach to cluster trajectories, as we do. They hierarchically
merge clusters by evaluating a well-founded sociological inter-
group closeness measure defined on a combination of proximity
and velocity features, stopping when a given condition is met.

Conversely, our method does not rely neither on relative
position or velocity fixed thresholds [2], [26] nor on sequence-
dependent parameters [9]; it is flexible and general as the
features are not scene-specific [25] and their contribution is
learned from examples. Thanks to the use of a clustering
inference rule, solutions proposed by our method are partitions
and not coverings of the members of the crowd [24], meaning
that pairwise relations are consistent with the overall group
structure found. Moreover, the use of a time window to
predict groups let the method recognize that non-trivial
behaviors (e.g. neglecting strict proximity) may occur,
whereas frame-by-frame methods are limited to short term
reasoning [26]. Yet, the discriminative nature of the employed
framework makes learning compelling in terms of both
required data and computational cost, as opposed to graphical
models optimizing over a multiple hypothesis space [9].

This work extends our preliminary attempt in [17]. Here we
prove our proposal complies with social theories of group
formation, we devise and investigate new features to better
adhere to the sociological theory underpinning our method
and, eventually, extend the tests to new remarkably complex
datasets and compare with more recent competing algorithms.
Besides, the experiments further probe the need for learning
when dealing with heterogeneous crowds, shedding light on
the nature of the problem itself.

3 PROBLEM DEFINITION

We cast the group detection task as a clustering problem.
Consider a set of pedestrian M = {a, b, . . . } and Y(M) as
the set of all possible ways to partition M . Defining y as a
subset of pedestrians (also referred to as group or cluster) in
M , a generic set of subsets y = {y1, y2, . . . } is a valid
solution in Y(M) if the partitioning axioms are satisfied:
∀a ∈ M,∃!y ∈ Y(M) : a ∈ y and ∪y∈Y(M)y = M. Here,
we call singletons those pedestrians whose cluster is composed
by themselves only, i.e. |y| = 1.

In crowded contexts, this grouping cannot be solved by
exploiting spatial (positional or orientational) information only,
as proposed in F-formation theory, due both to confusion and
motion. Moreover, it is often the case that the physical distance
between a singleton and a member of a cluster is lower than
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(a) (b) (c)

Fig. 2. Highlights of social groups properties: (a) hierarchical coherence,
(b) density invariance and (c) transitivity.

that cluster intra-member mean distance. This is due to the fact
that, in real situations, social aspects heavily intervene in the
group formation process. In order to obtain crowd partitions
that are meaningful from a sociological point of view, the
following relevant properties of social groups must hold.

Hierarchical Coherence. Groups are composed by individ-
uals and sub-groups in a recursive fashion (Fig.2a). This has
been first observed in the seminal work of Canetti [27], based
on the assumption that members within a group cannot erase
already settled relationships as the crowd assembles.

Density Invariance. To keep their group identities preserved
at different crowd densities, members must be willing to
change the inner distance among them. Groups in very crowded
scenes will be more closed and compact, while groups in open
spaces will tend to exhibit more dilated patterns (Fig. 2b);
sociologically and empirical evidence can be found in Bandini
et al. [14] and in Moussaid et al. [3].

Transitivity. Not every member of a group needs to be
strictly connected with every one else, but any two members
may be part of the same group by means of a sufficiently
dense subgroup of pedestrian standing between them (Fig. 2c).
McPhail and Wohlstein’s work [28] formalized this idea: to
be considered part of a group one typically will have to be
connected with at least half of the members.

4 SOCIALLY CONSTRAINED CLUSTERING FOR
GROUPS DETECTION

We propose to solve the crowd partitioning problem employing
the Correlation Clustering (CC) [7] and we prove it is possible
to achieve a quasi-optimal crowd partition guaranteed to satisfy
the three aforementioned properties of Sec. 3. The CC algorithm
takes as input an affinity matrix W where, if W ab > 0 (W ab <
0), elements a and b belong to the same (different) cluster with
certainty |W ab|. The algorithm returns the partition y of a set
of elements M = {a, b, . . . } so that the sum of the affinities
between item pairs in the same clusters y is maximized:

CC = arg max
y∈Y(M)

∑
y∈y

∑
a6=b∈y

W ab
d . (1)

The pairwise elements affinity in W is parameterized as
weighted linear combination of a bounded dissimilarity measure
and its complement:

W ab
d = αT (1− d(a, b))− βTd(a, b). (2)

To be consistent with the definition of groups of Sec. 1, we
devise the pairwise distance between pedestrian a and b, d(a, b)
as detailed in Sec. 5.

In clustering theory, changing the dissimilarity space results
in different partitioning of the domain through the same
algorithm. By tuning [α,β] parameters in Eq. (2) we can
evaluate many different groupings and we’ll show that, under
a restrict set of hypothesis, they all satisfy the social properties
previously mentioned. In order to efficiently learn those
parameters according to different peculiarities groups exhibit in
different scenarios, in Sec. 6 we introduce Structural SVM [29]
with both an approximated inference procedure and a loss
function specifically designed for accurately measuring the
compatibility among possible crowd partitions.
The solution to Eq. (1), given the parametrization introduced
in Eq. (2) and subject to a hierarchical inference procedure,
guarantees the satisfaction of all the social groups properties:

Theorem 1. When the pairwise elements affinity in W is a
weighted linear combination of a bounded similarity measure
and its complement, a bottom-up approximated solution to CC
produces a partition that respects the hierarchical coherence,
density invariance and transitivity properties of social groups.

Proof. Let d : M ×M → [0, 1]p be a bounded distance on the
set of members of a crowd M so that (M,d) is a dissimilarity
space and suppose the affinity matrix of CC is constructed as in
Eq. (2), for some appropriate positive values of α,β ∈ Rp. To
demonstrate that the density invariance holds for all solutions
of CC consider that when the density increases, both distances
between groups and between members of the same group
diminish. This phenomenon is a less formal statement of the
scale invariance axiom of clustering defined in Kleiberg [30]
which is known to hold for sum-of-pairs clustering algorithm.
We must thus show that it holds when we are maximizing
affinities instead of minimizing distances as well. To this aim
let d = λd̄ and d̄ : M ×M → [0, 1

λ ]p so that

Wd = αT (1− λd̄)− βTλd̄

= λ[αT (
1

λ
− d̄)− βT d̄] = λWd̄,

(3)

where the notation for the elements is dropped for clarity.
Consequently, CC satisfies the scale invariance axiom since
multiplying all distances by a constant results in multiplying
the total affinity of each cluster by a constant and hence
the maximum affinity clustering solution is not changed.
Transitivity follows directly from the objective function of
CC in Eq. (1): to be assigned to the same group it suffices the
existence of any number of members such that the net effect
of all the involved pairwise relations is non-decreasing. Last,
the hierarchical coherence requires a greedy approximation
algorithm to optimize the CC that initially consider each
pedestrian in its own cluster and then iteratively merges the two
clusters whose union would produce the best clustering score,
stopping when joining clusters would decrease the overall
affinity. Hence, elements in the same cluster at lower levels of
the hierarchy are also together in higher level clusters.
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(a) Physical distance (b) Motion causality (c) Trajectory shape (d) Paths convergence

Fig. 3. Features: physical identity (a) and social identity (b,c) provide a computational interpretation of the concept of group membership, while (d)
evaluates the likeliness of the existence of a shared goal between pedestrians.

(a)

 0

-5  0  5

(b)

Fig. 4. Proxemics, modeled by gaussians (b), reveal physical identity
trough physical distance (a).

5 SOCIAL FEATURES FOR SOCIAL GROUPS
Given the problem formulation in Sec. 3 and the CC
parametrization of Eq. (2), here we define the distance function
d which acts on trajectories pairs. We consider the pedestrian
trajectory Ta = {(t,pta)}t, projected onto the ground plane,
as multivariate time series of metric (in meters) spatial
observations pta for pedestrian a at different times t. In order to
deal with the continuously changing nature of groups (splitting,
merging, switching members, . . . ) we reduce the observation
period to a time window T of fixed length. As a consequence,
groups can be differently detected even between (potentially
overlapped) sequential time windows Tk and Tk+1.

According to Def. 1, we devise four features able to
capture both the pedestrian physical and social identity as
well as to discern the presence of a shared goal among them,
namely: physical identity dph, trajectories shape-similarity dsh,
pedestrians causality dca and heat-maps dhm. A pairwise feature
vector dk(a, b) is hence defined for every couple of trajectories
Ta and Tb and for every time window Tk, as

d(a, b)
def
= dk(a, b) = [dph, dsh, dca, dhe]

k
a,b. (4)

5.1 From Physical Distances to Physical Identity
The physical identity can be regarded as a static relation
connecting physical distance to group membership. In his
Proxemic Theory, Hall [31] focused on the physical interactions
between pairs of individuals. More precisely, the theory is about
“the study of ways in which man gains knowledge of the content
of other men’s minds through judgments of behaviour patterns
associated with varying degrees of proximity to them.”

The proxemic model fomalizes how people use physical
space in interpersonal interactions and defines a set of concen-
tric bubbles around every individual, as depicted in Fig. 3a.

TABLE 1
Proxemics characterization as found in Hall’s Theory.

space boundaries (m) description
intimate 0.0 - 0.5 unmistakable involvement
personal 0.5 - 1.2 familiar interactions
social 1.2 - 3.7 formal relationships
public 3.7 - 7.6 non-personal interactions

Nevertheless, the transition between the four different proxemic
zones is abrupt (Tab. 1).

Spatial quantization can be heavily affected by noise or errors,
leading to wrong classification. Several approaches assign a
score to proxemic classes in order to obtain a continuous real-
valued similarity measure, [1], [32], [33]. To grasp the distance
based characteristics of group formation, we relax the original
Hall’s quantization by employing a Gaussian Mixture Model
(GMM) on the ground plane, centered on person location
and with fixed proxemics-inspired covariance matrices. The
resulting GMM is a weighted sum of zero mean Gaussians
with diagonal covariance matrices reflecting Hall’s boundaries
(i.e. Σ1 ← 0.5, Σ2 ← 1.2, . . . ):

GMM(pta − ptb) =
1

4

4∑
z=1

N (pta − ptb|0,Σz) (5)

Given a pair of trajectories Ta and Tb we evaluate the mixture
model of Eq. (5) on the vector of distances at each time instance.
This is equivalent to place the mixture on pta and measure
where the point ptb lies inside the proxemic space at each
instant t, as shown in Fig. 4 and in Fig. ??.

The static measure of social cohesion, called dph, is then
defined by averaging the mixture model responses over the
the set of time instances where trajectories Ta and Tb are
simultaneously present in the current time window, T ⊆ T k:

dkph(a, b) =
1

|T |

∑
t∈T

GMM(pta − ptb) (6)

Averaging is required since the physical identity among group
members is established in time and must remain coherent in
order to be a valid measure of social cohesion.
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5.2 Motion as an Indicator of Social Identity
Social Identity [6], [34] is a psychological paradigm built
on the intuition that group behavior is an emerging dynamic,
reflecting a shift in self-conception of the members who start
to define themselves in terms of their common membership.
According to [35], social identity reflects in the way people
mutually influence each other and consequently move in groups,
suggesting that social identity could be observed through
trajectories shape similarity and paths temporal causality.

5.2.1 Temporal Causality
Under the hypothesis of sufficiently stationary trajectories,
which is typically true for the observation of a time window, we
can employ the econometric model of Granger causality [36] to
measure to what extent pedestrians are mutually affecting their
motion paths [37]. Accordingly, we formalize two requirements:

1) the causal pedestrian will move before the effect pedes-
trian, and

2) the motion of the causal pedestrian contains information
about the way the effect pedestrian moves that cannot
be found in any other pedestrian motion.

A consequence of these statements is that the causal pedestrian
trajectory can help forecast the effect pedestrian trajectory
even after other data has first been used. Let’s define m as the
lag value for the causality analysis and denote the optimum
least-squares predictor of a stationary trajectory Ta at time
t using the set of values T̄a(t − m) by Pt(Ta|T̄a(t − m)).
Here T̄a(t − m) is all the information about trajectory Ta
accumulated since time t−m (inside the current time window
T k) up to time t−1. The predictive error series will be denoted
by εt(Ta|T̄a(t−m)) = Ta(t)− Pt(Ta|T̄a(t−m)) and define
σ2(Ta|T̄a(t−m)) as the variance of εt(Ta|T̄a(t−m)). It is
said trajectory Tb Granger causes Ta, briefly b→ a, if

σ2(Ta|T̄a(t−m)) > σ2(Ta|T̄a(t−m), T̄b(t−m)) (7)

The feature is then derived from a specific testing procedure
used to evaluate Granger causality trustworthiness. Let’s
introduce the sum of squared residuals for the constrained
and unconstrained models as

RSSc =

K∑
t=1

εt(Ta|T̄a(t−m))2 and

RSSu =

K∑
t=1

εt(Ta|T̄a(t−m), T̄b(t−m))2,

(8)

where K is the number of samples considered for the analysis.
We design our feature dca so as to be the critical confidence
measure of the hypothesis that Granger causality exists between
Ta and Tb. To this end, we consider the test statistic

Sb→a =
(RSSc −RSSu)/m

RSSu/(K − 2m− 1)
. (9)

and compute the area under the Fisher-Snedecor probability
function F to the left of S, as shown in Fig. 5. This results in
the following closed form solution [38] integral:

dkca(a, b) = max
S∈{Sb→a,Sa→b}

∫ S

0

F(x|m,K−2m−1)dx, (10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

x

F(m, K-2m-1)
critical confidence

S

Fig. 5. Visual example of causality probability. The vertical line is the S of
Eq. (9) while the shaded area is dca.

where Sb→a and Sa→b are both considered in order to obtain
symmetry, but as we value the existence of causality over its
direction, we only keep the one which maximize the probability.

5.2.2 Shape Similarity
Shape similarity may also be useful in describing social identity
as it overcomes the limit of the proxemics punctual and static
evaluation. We use the Dynamic Time Warping (DTW) [39]
on euclidean coordinates to map one time series to another by
minimizing the distance between the two. In particular, DTW
flexibility allows two time series that are similar but locally
out of phase to align in a non-linear manner. Suppose we have
two trajectories Ta and Tb of lengths A and B respectively.
To align these two sequences using DTW, we first construct
a distance matrix {Dij

ab}ij ∈ RA×B that encodes the squared
euclidean distance between any i-th element of Ta and j-th
element of Tb inside the current time window.

The best alignment can be found by a recursive minimization
of the cumulative cost γab of any path through the distance
matrix originating in D11

ab :

γab(i, j) = Dij
ab + min{γab(i-1, j), γab(i-1, j-1), γab(i, j-1)}.

(11)
In particular, we construct our feature to be the distance of the
two sequences once they are optimally aligned, that is the sum
of the Euclidean distances of associated points of Ta and Tb:

dsh(a, b) = γab(A,B)/max(A,B) (12)

where the denominator is the optimal warping path length used
as a normalization factor.

5.3 Common Goals from People Motion
Previously described features focus on both static and dynamic
aspect of trajectories when groups are already established, but
neglect the smooth process of group formation. People may
merge in groups starting from different location (e.g. meeting
action) or groups may split into subgroups and singletons
(according to the hierarchical coherence property of group
formation). Meeting or being close for a sufficient amount of
time may indicate the presence of a shared goal. Following
the results in [40], where heat maps were used to recognize
group activities, we also employ a heat map inspired feature
to holistically model groups.

A heat map Ha : NR × NC → [0, 1] associated to the
trajectory Ta is a R-by-C grid of heat sources ha that partitions
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 0

 0

Fig. 6. Intersecting heat maps are generated by converging trajectories,
which project on the xy plane their shared goal.

the ground plane. The heat source ha(i, j) activates if the
trajectory Ta happens to walk in the relative grid cell (i, j)
and once activated it is subject to thermal decay and thermal
diffusion processes:

Ha(i, j) =

R∑
p=1

C∑
q=1

Ea(p, q) · e−ks‖(p−i,q−j)‖, (13)

where ks is a parameter suggesting the relative importance
of different patches at different distances and Ea(p, q) is the
thermal energy produced by Ta on the patch (p, q). If we let
Ēa(p, q) be the accumulated thermal energy, we have

Ea(p, q) = Ēa(p, q) · e−krtint , (14)

being kr a parameter regulating the slow down of the heat
accumulation and dispersion and tint the duration of the
interaction between pedestrian a and cell (p, q) inside the
current time window T k.

Once we have constructed heat maps for every trajectory, we
define a similarity metric between two trajectories Ta and Tb
as the volume under the combined heat surface Υab obtained
as the pointwise product of the two heat maps Ha and Hb:

dkhe(a, b) =

R∑
i=1

C∑
j=1

Υab(i, j) =

R∑
i=1

C∑
j=1

Ha(i, j)Hb(i, j)

(15)
The volume under Υab reveals to what extent Ta and Tb have
been close in space during the observation period, something
that proxemics could already measure indeed. Nevertheless,
heat maps relax the constraint by which only elements from the
same frame can be compared, in practice this is accomplished
through the thermal diffusion process. At the same time, heat
maps also expose the history of their respective trajectories,
allowing the metric to capture the temporal aspect of motion
similarity. Proxemics, DTW and Granger causality would rate
two pedestrians meeting and parting ways analogously, even if
the former case is more likely to represent a group formation
process. Recognizing motion trajectories also encode temporal
information is a great advantage of heap maps based analysis.

6 LEARNING FRAMEWORK

The linear parametrization of the affinity matrix Wd of
Eq. (2) guarantees to reach a partition of the crowd which
is consistent with the social groups properties. The parameters
w = [α,β] govern both the importance of each feature

alone and their similarity/dissimilarity optimal combinations,
resulting in different clustering rules.

The choice of the best rule should account for all factors
affecting the group formation process, such as environmental
constraints or cultural influences. The complexity of explicitly
evaluating these factors resides in the impossibility to directly
observe them. Still, we can gain important insights by observing
the grouping process. On these premises, we adopt a learning
framework capable of choosing the most suitable clustering
rule by finding a set of feature weights that implicitly embodies
these non-observable aspects.

6.1 Supervised CC Through Structured Learning

Let us consider the input xi = {[1−di(a, b);di(a, b)]}a,b to be
the set of pairwise features computed on all the possible pairs
of trajectories Ta and Tb in the i-th temporal window and yi
the clustering solution, i.e. the set of all social groups appearing
in the crowd Mi. Since yi cannot be described by a single
valued function, we adopt the Structural SVM [29] framework
to model and learn predicting the solution. The goal is to learn
a classification mapping f : X → Y between input space
X and structured output space Y given a set of input-output
pairs {(x1,y1), . . . , (xn,yn)}. A discriminant score function
F : X × Y → R is defined over the joint input-output space
and F (x,y) can be interpreted as measuring the compatibility
of x and y. Now, the prediction function f can be defined as

f(x) = arg max
y∈Y(x)

F (x,y) (16)

where the maximizer over the label space Y(x) is the predicted
label, i.e. the solution of the inference problem. For simplicity
we choose to restrict the space of F to linear functions over
some combined feature representation Ψ(x,y) subject to a w
parametrization. This feature mapping cannot be defined out
of the context of the problem, as it is the problem itself that
specifies, given a particular input, the nature of the desired
solution. Following the definition of correlation clustering
in Eq. 1 and its parametrization introduced in Eq. 2, the
compatibility of an input-output pair is directly described as

F (x,y;w) = wTΨ(x,y) = wT
∑
y∈y

∑
a6=b∈y

xab. (17)

The problem of learning in structured and interdependent output
spaces can been formulated as a maximum-margin problem.
We adopt the n-slack, margin-rescaling formulation:

min
w,ξ

1

2
‖w‖2 +

C

n

n∑
i=1

ξi

s.t. ∀i : ξi ≥ 0,

∀i,∀y ∈ Y(xi)\yi : wT δΨi(y) ≥ ∆(y,yi)− ξi,
(18)

where δΨi(y)
def
= Ψ(xi,yi) − Ψ(xi,y), ξi are the slack

variables introduced in order to accommodate for margin
violations, ∆(yi,y) is the loss function further defined in
Sec. 6.3 and C is the regularization trade-off. Intuitively, we
want to maximize the margin and jointly guarantee that for a
given input, every possible output result is considered worst
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than the correct one by at least a margin of ∆(yi,y) − ξi,
where ∆(yi,y) is bigger when the two predictions are known
to be more different.

Remarkably, correlation clustering doesn’t need to know in
advance how many groups are present in the scene. Moreover,
a positive overall cluster score can group two elements even
if their affinity measure is negative, implicitly modeling the
transitive property of relationships in groups, as stated in Sec. 3.

6.2 Batch Sequential Optimization
The quadratic program (QP) (18) introduces a constraint for
every possible wrong clustering of the n examples, more
precisely

∑n
i=1(|Y(xi)| − 1). Unfortunately, the number of

ways to partition a set M scales more than exponentially with
the number of items according to the Bell sequence [41]

|Y(M)| =
|M |∑
i=0

1

i!

i∑
j=0

(−1)i−j
(
k

j

)
j|M |, (19)

making the optimization intractable. As an example, for a
crowd composed of 20 pedestrians the number of potential
solutions would be about 5.8 · 1012. In order to deal with this
high number of constraints many approximation schemes have
been proposed, where cutting plane algorithms or subgradient
methods are among the most commonly used. In particular, all
the constraints of QP (18) can be replaced by n piecewise-linear
ones by defining the structured hinge-loss:

H̃(xi)
def
= max

y∈Y
∆(yi,y)−wT δΨi(y). (20)

The computation of the structured hinge-loss for each element
i of the training set, described in Sec. 6.4, amounts to finding
the most “violating” output y for a given input xi and its
correct associated output yi. We only have n constraints of
the form ξi ≥ H̃(xi) and the non-smooth version of QP (18)
reduces to

min
w

1

2
‖w‖2 +

C

n

n∑
i=1

H̃(xi). (21)

By disposing of a maximization oracle, i.e. a solver for Eq. (20),
and a computed solution y∗, subgradient methods can easily
be applied to QP (21), being ∂wH̃(xi) = −δΨi(y

∗).
To exploit the domain separability of the constraints and

limit the number of oracle calls needed to converge to the
optimal solution, we choose to adopt a Block-Coordinate
version of the Frank-Wolfe algorithm (BCFW) [42], delineated
in Alg. (1). The algorithm works by minimizing the objective
function of Eq. (21) but restricted to a single random example
at each iteration. By calling the max oracle upon the selected
training sample (line 4) we obtain a new sub-optimal parameter
set ws by simple derivation (line 5). The best update is then
found through a closed-form line search (line 6), greatly
reducing convergence time compared to other subgradient
methods.

In order to solve QP (21) effectively, it is important to choose
an appropriate loss function as the learning ability of Structural
SVM highly depends on it. In Sec. 6.3 we introduce and

Algorithm 1 Block-Coordinate Frank-Wolfe Algorithm

1: Let w(0),w
(0)
i := 0 and l(0), l

(0)
i := 0

2: for it := 0 to maxIterations do
3: Pick i at random in {1, . . . , n}
4: Solve y∗ := arg maxy∈Y ∆(yi,y)−wT δΨi(y)

5: Let ws := C
n δΨi(y

∗) and ls := C
n∆(yi,y

∗)

6: Let γ :=
(w

(it)
i −ws)Tw(it)+ C

n (ls−l(it)
i )

|w(it)
i −ws‖2

and clip to [0, 1]

7: Update w
(it+1)
i := (1− γ)w

(it)
i + γws

and l(it+1)
i := (1− γ)l

(it)
i + γls

8: Update w(it+1) := w(it) + w
(it+1)
i −w

(it)
i

and l(it+1) := l(it) + l
(it+1)
i − l(it)

i

9: end for

discuss different potential loss functions and their respective
descriptive ability. Given the loss function, in Sec. 6.4 an
efficient method to compute the maximization oracle (line 4
of Alg. 1) is described.

6.3 Loss Function and Scoring Procedure

One common choice of loss function for clustering is the
pairwise loss ∆PW (yi,y), which is a generalization of the
Rand coefficient [43], and is defined as the ratio between the
number of pairs on which yi and y disagree on their cluster
membership and the number of all possible pairs of elements in
the set. Due to the quadratic number of connections that exist
among crowd members, this measure tends to be imprecise
when dealing with large crowds: as the crowdness increases, the
number of positive links connecting group members becomes
negligible with respect to the total number of links. As a
consequence, erroneous solutions won’t be strongly penalized.
The MITRE loss [44], ∆M (yi,y), founded on the understand-
ing that connected components are sufficient to describe groups,
partially mitigates this problem by representing groups as
spanning trees, instead of complete graphs, inducing a linear
amount of both positive and negative links among members
(and not quadratic as in the pairwise case). For any crowd
partitioning, a spanning forest is an equivalence class as many
trees that describe the same group configuration may exist. The
final score is obtained by accounting for the number of links that
needs to be removed or added to recover a spanning forest of
the correct solution. Nonetheless, problems arise when working
on relations and not directly on members, as singletons have
no connections at all but should still be considered positively
when correctly classified.

For this motivation, we propose a loss function, GROUP-
MITRE loss (G-MITRE) ∆GM (yi,y), that overcomes this
limitation by adding, for each pedestrian described by the
trajectory Ti, a fake counterpart αTi

to which only singletons
are connected. Through this shrewdness we can now take
into consideration singletons as well when computing the
discrepancy between two solutions. The particular design
choice to link to the fake counterparts only singleton members
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(a) yi PAIRWISE links (b) y,∆PW (yi,y) = 0.27

(c) yi MITRE links (d) y,∆M (yi,y) = 0.6

(e) yi G-MITRE links (f) y,∆GM (yi,y) = 0.75

Fig. 7. Differences in the way losses account for errors. Singletons are
white. Figures (a, c, e) depict solution yi and the links considered by the
respective losses, while (b, d, f) color pedestrians according to solution y
and show the links on which the two solutions yi and y disagree.

generates two discrepancies when committing errors involving
singletons and is thus a further effort in generating more
plausible hierarchical groups in the solution, as depicted in
Fig. 7. More formally, consider two clustering solutions yi,
y and a representative of their respective spanning forests Q
and R. The connected components of Q and R are identified
respectively by the set of trees Q1, Q2, . . . and R1, R2, . . . .
Note that if the number of elements in Qj is |Qj |, then only
c(Qj)

def
= |Qj |−1 links are needed in order to create a spanning

tree. Let us define πR(Qj) as the partition of a tree Qj with
respect to the forest R, that is the set of subtrees obtained by
considering only the membership relations in Qj also found
in R. Besides, if R partitions Qj in |πR(Qj)| subtrees then
v(Qj)

def
= |πR(Qj)|−1 links are sufficient to restore the original

tree. It follows that the recall error for Qj can be computed as
the number of missing links divided by the minimum number
of links needed to create that spanning tree. Accounting for
all trees Qj the global recall measure of Q is:

RQ = 1−
∑
j v(Qj)∑
j c(Qj)

=

∑
j |Qj | − |πR(Qj)|∑

j |Qj | − 1
(22)

The precision of Q (recall of R) can be computed by
exchanging Q and R. Given the definition of precision, recall
and employing the standard F -score F1, the loss is defined as

∆GM = 1− F1. (23)

Algorithm 2 G-MITRE loss ∆GM (yi,y) computation
Require: yi and y as disjoint-set data structures

1: ϕ(x) are the unique roots of connected components x

2: Γ(x) is the size of the connected component with root x

3: for all T ∈ yi/y do
4: yi/y = yi/y ∪ αT
5: if Γ(FIND(yi/y(T )) = 1 then
6: UNION(yi/y(T ),yi/y(αT ))

7: end if
8: end for
9: for all q ∈ ϕ(yi/y) do

10: vyi/y + = |ϕ(
⋃

FIND(yi/y(T ))=q y/yi(T ))| − 1

11: cyi/y + = Γ(q)− 1

12: end for
13: Ryi/y = 1− vyi/y/cyi/y

14: ∆(yi,y) = 1− 2Ryi
Ry/(Ryi

+Ry)

The complete algorithm for the computation of the G-MITRE
loss is reported in Alg. 2. We employ disjoint-set arrays
due to the efficiency of checking whether two pedestrians
belong to the same group. Recall that UNION and FIND are
the standard functions defined over the disjoint-set arrays and
denote the operations to merge two clusters and to find an
element membership respectively. In the pseudo-code we use
the notation yi/y to indicate that the algorithm first work on
the solution yi and then analogously on y.

6.4 Approximate Oracle

Despite the simplicity of the algorithm, the intrinsic complexity
of the optimization is hidden in the search for the most violating
solution y∗ for the i-th example (line 4 of Alg. (1)): finding the
most violated constraint requires to solve the loss augmented
decoding subproblem. Note that the original prediction problem
of Eq. (16) is NP-hard and the insertion of a non-linear loss
in the computation of the maximum is not likely to help.
Nevertheless, thanks to its iterative nature, the inference scheme
introduced in Sec. 4 can be adapted to approximate the oracle
as well. Starting from the trivial solution having each pedestrian
of the i-th example in its own cluster, the algorithm repeatedly
merges the two clusters which reflect in the highest increment
in the structured hinge-loss H̃(xi) of Eq. (20), until a local
maxima is found.

Of course by following a greedy procedure, there is no
guarantee to select the most violated constraint. Interestingly
enough, Lacoste-Julien et al. [42] show that all convergence
results known for exact maximizer of the loss augmented
problem also hold for approximate maximizers by allowing
the algorithm to iterate longer toward convergence. For further
details, please refer to their original work.
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TABLE 2
Comparative results on publicly available dataset using the G-MITRE loss of Sec. 6.3 and the positive pairwise loss ∆+

PW of [26].

our method baseline [2] [24] [26] [21]
P R P R P R P R P R P R

BIWI ∆GM 97.3±0.7 97.7±1.5 71.0±8.1 69.6±7.4 89.2 90.9 84.0 51.2 67.3 64.1
hotel ∆+

PW 89.1±1.2 91.9±1.5 47.6±9.2 88.6±8.6 88.9 89.3 83.7 93.9 81.0 91.0 51.5 90.4
BIWI ∆GM 91.8±1.2 94.2±0.9 72.4±4.4 65.2±3.4 87.0 84.2 60.6 76.4 69.3 68.2
eth ∆+

PW 91.1±0.4 83.4±0.6 39.1±8.4 91.2±1.7 80.7 80.7 72.9 78.0 79.0 82.0 44.5 87.0
CBE ∆GM 81.7±0.2 82.5±0.2 59.9±2.9 53.5±6.8 77.2 73.6 56.7 76.0 40.4 48.6
student003 ∆+

PW 82.3±0.3 74.1±0.2 24.0±9.7 49.3±12.9 72.2 65.1 63.9 72.6 70.0 74.0 10.6 76.0

7 EXPERIMENTAL RESULTS

We designed several experiments to evaluate the algorithm
behavior on well-assessed benchmarks and its connections to
the nature of the problem. All the experiments were carried
out on ground truth trajectory data, except for Sec. 7.4 where
the method is evaluated on tracklets extracted by a modern
detector/tracker system. We also propose new video sequences
to stress the algorithm over a variety of challenges in real
world scenarios. Since the method works on ground plane
(metric) data, we also provide homography information for all
the employed sequences.

Datasets

We selected two publicly available datasets, namely the BIWI
Walking Pedestrians dataset [45] and the Crowds-By-Examples
(CBE) dataset [46]. The former dataset records two low crowded
scenes, outside a university and at a bus stop (eth and hotel
in Tab. 3). The CBE dataset records a medium density crowd
outside another university (student003, briefly stu003)
providing some challenges: the density of the pedestrians is
significantly high and the presence of multiple entry and
exit points. While BIWI and CBE are standard datasets in
crowd analysis, we also use the more recent Vittorio Emanuele
II Gallery (VEIIG) dataset [47], from which we extracted
a five minutes subsequence, gal1, particularly interesting
due to the fast and continuous change in crowd density.
We also propose a new dataset to cope with the increasing
variety of application in dense-crowd management, MPT-20x100,
composed of 20 sequences of 100 frames where we manually
annotated trajectories and social groups. The dataset comprises
different videos [48] all characterized by a high number of
pedestrians with an heterogeneous set of scene conditions,
ranging from density, scale, viewpoint and type of interactions,
like walking in a mall, crossing the street or participating at
public events.
In Tab. 3 we report some measures useful to characterize the
spatial complexity of the datasets:

• din is the group compactness, computed as the mean
distance between members of the same groups;

• dout is the group isolation or the mean distance between
each member and its closest unrelated pedestrian;

• the ratio di/o
def
= din/dout measures crowd collectiveness:

small values mean compact groups in a sparse crowd.

TABLE 3
Datasets: number of pedestrians (#p), groups (#g) and density metrics.

#p #g din (m) dout (m) di/o

student003 406 108 0.41 0.70 0.59
eth 117 18 0.99 2.79 0.35
hotel 107 11 0.75 2.00 0.38
gal1 630 207 0.77 1.66 0.46
MPT-20x100 82 10 0.63 1.45 0.48

Evaluation Scheme
There is no consensus on which metrics should be used to
evaluate groups correctness: we propose to use the G-MITRE
precision P and recall R since it accounts for the correct
classification of singletons as well. This is an important gain
as in crowded scenes the number of people walking alone
is rarely negligible. Each measure is reported in terms of
mean and standard deviation over 5 runs to account for the
stochastic nature of the training of our algorithm. Where not
differently specified, we used a 100s for training and a 10s
sliding window with no overlap for features computation. The
regularization parameter C of QP. (18) is fixed to 10.

For the heat-map based feature of Sec. 5.3, we run a grid
search on the parameters. For all the experiments, the length
of the cells edge is fixed to 30cm, ks = 10−5 and kr = 0.5.

7.1 Baseline and Benchmark Comparisons
We compare our method with three recent state of the art group
detection algorithms, namely [2], [21], [24], [26], selected on
the basis of their reported performances on public datasets and
availability of code. In addition, we devised a simple baseline
version of our solution that performs the group partitioning
with no use of the learning framework. The weights are
randomly chosen to be the same for all the features, so that
the randomness resides in the similarity/dissimilarity ratio.

7.1.1 Quantitative Results
Quantitative results are given in Tab. 2. To highlight our
algorithm superiority, results are presented both in terms of
G-MITRE and a pairwise loss accounting only for positive
(intra-group) relations but neglecting singletons, ∆+

PW [26]. The
latter loss is not directly optimized by our algorithm, still our
method outperforms the competitors in all the tested sequences.
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TABLE 4
Evaluation of our proposal when trained with different loss functions.

Pairwise ∆PW MITRE ∆M

P R P R
hotel 90.1±2.0 84.1±3.2 89.2±3.0 93.2±1.9
eth 88.7±1.8 87.3±2.6 91.9±0.8 92.9±1.0
stu003 68.9±1.4 69.9±1.5 80.1±2.4 80.9±2.3

This can be explained through the ability of our algorithm to
adapt the concept of groups to always different scenario by
varying the feature importance and the use of sociologically
inspired similarity functions. The slightly lower performances
on the stu003 sequence are due to the high complexity of
the scene: the high value of the di/o ratio in Tab. 3 suggests
the presence of loose groups in a dense crowd and, as such,
challenging to be detected.

7.1.2 Evaluation of Different Loss Functions
As structured learning relies upon a definition of what’s wrong
to learn how to classify well, the choice of the loss function can
greatly affect the final performances. By fixing the G-MITRE
measure as a proper scoring scheme, we quantitatively test
the influence of the choice of the loss on the eth, hotel
and stu003 datasets (Tab. 4). As it could be expected by its
definition, the improvement due to the use of theG-MITRE loss
(reported in Tab. 2) is greater in the eth and hotel sequences
where the ratio between the number of singletons and the people
walking in groups is higher and as such learning to classify
them as well becomes crucial. More interestingly, we observe
how the pairwise loss obtains outstanding performances when
the number of pedestrians is limited, but becomes ineffective
when it starts to grow, as in stu003.

7.2 Features Weight Learning on MPT-20x100

CBE and BIWI datasets expose some interesting challenges of
the problem but, with the only exception of stu003 sequence,
they have a limited number of pedestrians in scene and a
low crowd density. Moreover, the scenarios are similar and
the variety of interactions underlying the group formation is
limited. The proposed MPT-20x100 datasets, on the other hand,
presents different degrees of complexity.

First, we evaluate the general performance of the algorithm
and compare with both our baseline and the proposal in [2]
where, for the latter method, we manually tuned the thresholds
to achieve best results. These methods are clustering based,
partially consistent with the social group axioms but no learning
is employed. Results are shown in Fig. 8 as a survival curve plot
which reveals on how many sequences the algorithms where
at least able to reach the specific lower-bound performance
and per-video scores are in Fig. 9. Interestingly, the difference
between our method and [2] increases here with respect to
the previous datasets on an average of 10%, suggesting that
sequences can be really different in the concept of groups they
embed and thus learning is mandatory to adapt to this new
representations of social groups and keep performances stable.
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Fig. 9. Results on MPT-20x100 highlight the complexity of each scene.

7.2.1 The Need for Learning from Examples
The confusion-like matrix, depicted in Fig. 10, presents
the F-1 scores obtained by training the algorithm on one
sequence of MPT-20x100 (row labels) and testing it on all
the other sequences (column labels). By reading the matrix,
and averaging each row over all the columns, it is possible to
grasp how good a particular sequence was for training. At the
same time, by observing the average of the columns over all
the rows, we can get intuition about how much each sequence
was effectively predicted by all the others.
We are interested in understanding whether a specific notion
of group is shared across sequences and how it is influenced
by both scene elements (e.g. crowd density) and unobserved
aspects (e.g. intentions and social hierarchies).

With the purpose of capturing these invariants, we search the
connected component of the matrix using the F-1 score as the
affinity value among elements. Clustering is performed through
an asymmetric version of spectral clustering [49] based on the
Random Walk Laplacian defined as

L = AD−1, (24)

where A is the affinity matrix defined as in Fig. 10 and D is
the usual degree matrix. Following the eigen-gap heuristic we
found 4 distinct clusters in the MPT-20x100 dataset, highlighted
with black lines in Fig. 10; for every cluster we computed the
din, dout and di/o spatial measures, displayed in Tab. 5, to verify
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Fig. 10. F-1 scores obtained by all combinations of train/test pair
sequences in MPT-20x100. Results were clustered (diagonal blocks C1-
C4 from left to right) to highlight similar notion of group among sequences.

TABLE 5
Spatial depiction, training efficacy and groups predictability of the

clusters of sequences of Fig. 10.

cluster din (m) dout (m) di/o F1 train F1 test
C1 0.58 1.03 0.54 0.82 0.82
C2 0.59 1.28 0.47 0.85 0.84
C3 0.59 0.99 0.59 0.77 0.64
C4 0.89 3.00 0.34 0.75 0.84

if clusters with a similar notion of group also share a common
configuration of distances among pedestrians and possibly if
the performance are connected to crowd density.

Tab. 5 also reports a measure of training efficacy (F1 train),
computed as the mean accuracy obtained on the whole dataset
when only sequences in that specifi cluster were used for
training and, analogously, a group predictability score (F1 test)
or the mean accuracy obtained on the sequences of that cluster
when all the sequences were used for training. They indicate
how much a cluster is useful during training and easy it is to
predict groups inside its sequences.

A first observation that can be made is about the cluster
C4, which presents the highest F1 test and the lowest F1 train.
We found it was easy to predict groups in these videos but
they were poorly informative as training examples, a result
justified by its small di/o. Nonetheless, clusters 1 and 3 exhibits
very similar di/o ratio but perform very differently in terms
both of training efficacy and testing score, suggesting a trivial
heuristic based on spatial information only is insufficient to
visually discern groups. Implicit aspects like motion constraints
or cultural and social context also affect the group process
formation, defending our hypothesis that learning is needed to
adapt the concept of group to the current data.

7.2.2 Do we Capture the Essence of Being a Group?
As previously stated, MPT-20x100 comprises very different
scenarios and situations and can provide important insights on
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Fig. 11. Features normalized coefficients of Eq. (25).

which are the most important elements that reveal groups. To
this end, recall the definition of feature vector w = [α,β] =
[w1, w2, . . . , w8] from Eq. (2) of Sec. 4 is such that the affinity
between two trajectories Ta and Tb can be written as:

W ab
d = αT (1− d(a, b))− βTd(a, b)

= w1 + w2 + w3 + w4−[(w5 + w1)dph + . . .

(w6 + w2)dsh + . . .

(w7 + w3)dca + . . .

︸ ︷︷ ︸
constant term

(w8 + w4)dhe︸ ︷︷ ︸
(a, b)-dependent term

]

(25)

The contribution of each feature to the score, transformed
from a distance to an affinity measure by the constant term of
Eq. (25), is encoded in the absolute value of the coefficient of
the features themselves.

As shown in Fig. 11, the proxemic inspired feature dph
dominates all the others while the importance of the remaining
features vary greatly from sequence to sequence. The two
sequences 1manko3 (Fig. 15) and 1dawei1 (Fig. 1), for
example, present very similar contribution from dhm and
dsh, while the importance assigned to dph in 1dawei1 is
shifted to dca in 1manko3. The former sequence present a
particularly sparse crowd, making distance among elements
a strong peculiarity of groups, but when the space among
pedestrian is reduced both intra and inter-groups distances
(and consequently dph) become less significant. Conversely,
the causality feature dca becomes more important when the
density increases as pedestrians tend to follow each others
to avoid getting separated from the rest of the group. Heat
maps importance gain emphasis from comparing 1manko3 and
3shatian6 (Fig. 15), as they are very helpful in decoupling
trajectories that stand very close in space but for a very limited
amount of time. In particular, in 1manko3, people crossing
from opposite sides of the road tend to be very close when
meeting in the middle, even if they are not in the same group.

7.3 Evaluating the Influence of Density Changes
In this test setting we evaluate if the feature weights learned
by the Structural SVM of Sec. 6 are sufficiently general to
deal with crowds at different densities and, at the same time,
understand whether an online version of Alg. 1 would bring
any accuracy improvement. To this end we introduce a new
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TABLE 6
Performance of detector [50], tracker [51] and group detection algorithms (in terms of G-MITRE) in a fully automatic pipeline.

Detector Tracker our proposal [2] [24] [21]
P R MOT(A/P) MT IDS FRG P R P R P R P R

hotel 43.1 52.4 66.9 / 0.88 18.8 120 34 77.9 76.9 75.7 78.0 46.3 38.6 60.2 57.5
eth 68.2 53.7 92.3 / 0.08 75.0 0 68 81.1 79.7 78.4 79.3 58.3 70.6 57.3 61.2
student 56.7 36.8 43.3 / 1.22 06.0 342 876 75.0 71.3 63.2 56.4 40.2 52.4 35.1 40.2
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Fig. 12. Pedestrians number and di/o ratio temporal evolution in the gal1
sequence of GVEII.

video sequence, gal1 from GVEII, containing an average
number of 70 pedestrians simultaneously present in the scene.
The distribution of pedestrians is not uniform though, and
increases over time, as well as for their density, represented
by the di/o ratio (Fig. 12). In order to underline the importance
of capturing changes in density, we compare the batch version
of the training algorithm Alg. 1 with a sequential and a fully
online version (Fig. 13). In the former case, examples are fed
to the supervised training procedure in temporal order one at a
time, while for the latter case, the weights have been initialize
to the ones learned batch and the algorithm at each step learns
from the previous prediction, thus without supervision.
The plot in Fig. 13 shows the performance of the batch training
version tends to decrease as the crowd density increases. While
the sequential version of the algorithm performs better, it
is slow to respond to sudden density changes like in time
windows 15. Indeed, a non-smooth density variation affects
negatively the training process, leading to a performance
drop further recovered in the subsequent temporal windows.
Eventually, this behavior is partially mitigated in the fully
online version. The higher performances are motivated by
the implicit regularization: using the prediction as training
input discourages the learner to drastically modify the weights
vector and mimic the smooth variation in crowd density slightly
adjusting in time.

7.4 Performances on Real Detector and Tracker
Our algorithms assumes the availability of correct trajectories
to detect groups, but what happens in a fully automatic video
surveillance pipeline where a people detector and tracker are
employed? We carried out experiments by extracting pedestrian
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Fig. 13. F-1 score comparison between differently trained version of the
our method on gal1 of GVEII.

positions through a state of the art detector [50] and obtaining
trajectories by means of a continuous energy minimization
method [51]. We compare with Ge et al. [2], Yamaguchi et
al. [24] and Shao et al. [21] over the same input data, results
are shown in Tab. 6. Our proposal outperforms the competitors
even in the case of noisy trajectories.

Tracking performances evidence a high number of tracks
fragments, namely FRG, that are mainly due to the localization
error introduced by the automatic people detector on non-
trivial crowded scenes. FRGs are proportional to the number
of small new tracks created by the system instead of correctly
associating previously tracked objects, with the consequence
of splitting ideal tracks into temporally disjoint segments.
A high FRG number affects the group detection performance
as the dph and dca features are computed when the trajectories
are simultaneously present in the scene and thus merging
temporal disjoint fragments is strongly discouraged by the
correlation clustering algorithm. Intuitively, by reducing the
size of the window we are able to minimize the number of
split trajectories at each example and recover most of the
original performances, as shown in Fig. 14(c). The improvement
is basically achieved through the joint adoption of socially
founded features and structural learning that weights the
features according to the observed noisy trajectories. The
experiment allow us to conclude that even in the case of
a real application and imprecise input data the strengths of the
proposed algorithm are maintained because are strongly related
to the social rules that govern the group formation process,
these rules are not data dependent and hold despite the applied
feature extraction techniques.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

(a) (b)

 30

 40

 50

 60

 70

 80

 1  2  3  4  5

F
1-

sc
or

e 
(%

)

time window length (s)

our proposal
Ge et al.

(c)

Fig. 14. Group detection results on student003 are displayed when corrected tracks are used (a) and when input with people detector and tracker
automatic responses (b). Regardless of the input noise, most of the groups can still be identified. This is due to the robustness of the features
employed during learning and to the decrease in length of the time window (c) which prevents fragmented tracks to be split in different groups.

(a) 1airport1 (b) 1manko3 (c) 2jiansha5 (d) randomcross3

(e) 3shatian6 (f) seq1 (g) eth (h) hotel

Fig. 15. Examples of groups detected through our method: sequences from (a) to (e) are from the MPT-20x100, while (f) is part of GVEII and finally,
(g) and (h) belong to the BIWI dataset. Groups are identified regardless of the scene context and errors are visually acceptable, as in (d).

8 CONCLUSION

In this work, we pointed out the need to approach the task of
detecting social groups in crowds from a learning perspective.
Many existing methods rely on specifically tuned parameters
that limit their applicability in real world scenarios. Our
intuition is that there are crowds that preserve the same concept
of social group, but in many cases this concept cannot be
distilled from spatial consideration only. We thus defined a
set of social-inspired and strongly motivated features able to
capture and characterize different groups peculiarities. To learn
a socially meaningful clustering rule to group pedestrians,
we relied on the Structural SVM framework and designed a
peculiar loss function able to account for singletons as well
as for group errors. Even though the algorithm was originally
designed to work with exact trajectories, we replicated the
experiments on noisy tracklets extracted by a detector/tracker
obtaining state-of-the-art results. Moreover, we proposed an
online training version of the method, able to achieve superior
generalization performances on crowds with variable density.

We did note, however, that as we consider wider portions

of the scene, the chance that many different densities groups
coexist in different locations increases, leading to the necessity
to learn more than one clustering rule per scene. To resolve
this problem we plan, as future work, to learn a set of different
distance measures and use latent variables to choose the most
appropriate given a particular zone. Code and datasets are made
publicly available1 in order to reproduce this paper results and
allow the community to improve the proposed method.

REFERENCES

[1] L. Manenti, S. Manzoni, G. Vizzari, K. Ohtsuka, and K. Shimura,
“An agent-based proxemic model for pedestrian and group dynamics:
motivations and first experiments,” in Multi-Agent-Based Simulation XII,
ser. LNCS. Springer Berlin Heidelberg, 2012, pp. 74–89.

[2] W. Ge, R. Collins, and R. Ruback, “Vision-based analysis of small
groups in pedestrian crowds,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 34, pp. 1003–1016, May 2012.

[3] M. Moussaid, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz, “The
walking behaviour of pedestrian social groups and its impact on crowd
dynamics,” PLoS ONE, vol. 5, Apr. 2010.

1. http://imagelab.ing.unimore.it/group-detection



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[4] B. E. Moore, S. Ali, R. Mehran, and M. Shah, “Visual crowd surveillance
through a hydrodynamics lens,” Commununications of the ACM, vol. 54,
pp. 64–73, Dec. 2011.

[5] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,”
Physical Review E, vol. 51, pp. 4282–4286, May 1995.

[6] J. C. Turner, “Towards a cognitive redefinition of the social group,”
Current Psychology of Cognition, vol. 1, pp. 93–118, jun 1981.

[7] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” Machine
Learning, vol. 56, pp. 89–113, Jul. 2004.

[8] T. Joachims, T. Finley, and C.-N. J. Yu, “Cutting-plane training of
structural SVMs,” Machine Learning, vol. 77, pp. 27–59, Oct. 2009.

[9] S. Pellegrini, A. Ess, and L. Van Gool, “Improving data association by
joint modeling of pedestrian trajectories and groupings,” in Proc. Eur.
Conf. Computer Vision (ECCV), 2010, pp. 452–465.

[10] G. Bon, The Crowd: a Study of the Popular Mind. Kessinger Publishing,
1896.

[11] A. G. Ingham, G. Levinger, J. Graves, and V. Peckham, “The ringelmann
effect: Studies of group size and group performance,” Journal of
Experimental Social Psychology, vol. 10, pp. 371–384, Jul. 1974.

[12] R. Mehran, A. Oyama, and M. Shah, “Abnormal crowd behavior detection
using social force model,” in Proc. IEEE Int’l Conf. Computer Vision
and Pattern Recognition (CVPR), 2009, pp. 935–942.

[13] M. Luber, J. Stork, G. Tipaldi, and K. Arras, “People tracking with human
motion predictions from social forces,” in Proc. Int’l Conf. Robotics and
Automation (ICRA), 2010, pp. 464–469.

[14] S. Bandini, A. Gorrini, L. Manenti, and G. Vizzari, “Crowd and pedestrian
dynamics: Empirical investigation and simulation,” in Proc. Measuring
Behavior, Int’l Conf. Methods and Techniques in Behavioral Research,
2012, pp. 308–311.

[15] S. D. Reicher, R. Spears, and T. Postmes, “A social identity model of
deindividuation phenomena,” European Review of Social Psychology,
vol. 6, pp. 161–198, Jan. 1995.

[16] M. Rodriguez, I. Laptev, J. Sivic, and J.-Y. Audibert, “Density-aware
person detection and tracking in crowds,” 2011, pp. 2423–2430.

[17] F. Solera, S. Calderara, and R. Cucchiara, “Structured learning for
detection of social groups in crowd,” in Proc. IEEE Int’l Conf. Advanced
Video and Signal Based Surveillance (AVSS), 2013, pp. 7–12.

[18] A. Kendon, Conducting Interaction: patterns of Behavior in Focused
Encounters. Cambridge University Press, 1990.

[19] M. Cristani, L. Bazzani, G. Paggetti, A. Fossati, D. Tosato, A. Del Bue,
G. Menegaz, and V. Murino, “Social interaction discovery by statistical
analysis of f-formations,” 2011, pp. 1–12.

[20] M. Feldmann, D. Fränken, and W. Koch, “Tracking of extended objects
and group targets using random matrices,” IEEE Trans. Signal Processing,
vol. 59, pp. 1409–1420, Apr. 2011.

[21] J. Shao, C. C. Loy, and X. Wang, “Scene-independent group profiling
in crowd,” in Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition (CVPR), 2014.

[22] S. K. Pang, J. Li, and S. Godsill, “Detection and tracking of coordinated
groups,” IEEE Trans. Aerospace and Electronic Systems, vol. 47, pp.
472–502, Jan. 2011.

[23] L. Bazzani, Cristani, and V. Murino, “Decentralized particle filter for
joint individual-group tracking,” in Proc. IEEE Int’l Conf. Computer
Vision and Pattern Recognition (CVPR), 2012, pp. 1886–1893.

[24] K. Yamaguchi, A. Berg, L. Ortiz, and T. Berg, “Who are you with and
where are you going?” in Proc. IEEE Int’l Conf. Computer Vision and
Pattern Recognition (CVPR), 2011, pp. 1345–1352.

[25] M. C. Chang, N. Krahnstoever, and W. Ge, “Probabilistic group-level
motion analysis and scenario recognition,” 2011, pp. 747–754.

[26] M. Zanotto, L. Bazzani, M. Cristani, and V. Murino, “Online bayesian
non-parametrics for social group detection,” in Proc. British Machine
Vision Conference (BMVC), 2012, pp. 111.1–111.12.

[27] E. Canetti, Crowds and Power. Farrar, Straus and Giroux, 1984.
[28] C. McPhail and R. T. Wohlstein, “Using film to analyze pedestrian

behavior,” Sociological Methods & Research, vol. 10, no. 3, pp. 347–375,
Feb. 1982.

[29] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin
methods for structured and interdependent output variables,” Journal of
Machine Learning Research, vol. 6, p. 14531484, Sep. 2005.

[30] J. Kleinberg, “An impossibility theorem for clustering,” in Advances in
Neural Information Processing Systems, 2002, pp. 446–453.

[31] E. Hall, The hidden dimension. Doubleday, 1966.
[32] S. Calderara and R. Cucchiara, “Understanding dyadic interactions

applying proxemic theory on videosurveillance trajectories,” in Proc.
IEEE Int’l Conf. Computer Vision and Pattern Recognition Workshops
(CVPRW), 2012, pp. 20–27.

[33] M. Cristani, G. Paggetti, A. Vinciarelli, L. Bazzani, G. Menegaz, and
V. Murino, “Towards computational proxemics: Inferring social relations
from interpersonal distances,” in Proc. IEEE Int’l Conf. Social Computing,
2011, pp. 290–297.

[34] S. Haslam, Psychology in Organizations. SAGE Publications, 2004.
[35] J. Oldmeadow, M. J. Platow, and M. Foddy, “Task-groups as self-

categories: a social identity perspective on status generalization,” Current
Research in Social Psychology, vol. 10, pp. 268–283, Aug. 2005.

[36] C. W. J. Granger, “Investigating causal relations by econometric models
and cross-spectral methods,” Econometrica, vol. 37, pp. 424–438, Aug.
1969.

[37] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, “Effective
leadership and decision-making in animal groups on the move,” Nature,
vol. 433, pp. 513–516, Feb. 2005.

[38] M. Hazewinkel, Encyclopaedia of Mathematics. Springer, 1989, vol. 4.
[39] D. Berndt and J. Clifford, “Using dynamic time warping to find patterns

in time series,” in Proc. ACM Int’l Conf. Knowledge Discovery and Data
Mining Workshops (KDDW), 1994, pp. 359–370.

[40] W. Lin, H. Chu, J. Wu, B. Sheng, and Z. Chen, “A heat-map-based
algorithm for recognizing group activities in videos,” IEEE Trans. Circuits
and Systems for Video Technology, vol. 23, pp. 1980–1992, Nov. 2013.

[41] G.-C. Rota, “The number of partitions of a set,” The American
Mathematical Monthly, vol. 71, pp. 498–504, May 1964.

[42] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher, “Block-
coordinate frank-wolfe optimization for structural SVMs,” in Proc. Int’l
Conf. Machine Learning (ICML), 2013, pp. 53–61.

[43] W. M. Rand, “Objective criteria for the evaluation of clustering methods,”
Journal of the American Statistical Association, vol. 66, pp. 846–850,
Dec. 1971.

[44] M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and L. Hirschman, “A
model-theoretic coreference scoring scheme,” in Proc. ACL Int’l Conf.
Message Understanding, 1995, p. 4552.

[45] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk
alone: Modeling social behavior for multi-target tracking,” in Proc. IEEE
Int’l Conf. Computer Vision and Pattern Recognition (CVPR), 2009, pp.
261–268.

[46] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,”
Computer Graphics Forum, vol. 26, pp. 655–664, Sep. 2007.

[47] S. Bandini, A. Gorrini, and G. Vizzari, “Towards an integrated approach
to crowd analysis and crowd synthesis: a case study and first results,”
Pattern Recognition Letters, vol. 44, pp. 16–29, Jul. 2014.

[48] B. Zhou, X. Tang, H. Zhang, and X. Wang, “Measuring crowd
collectiveness,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 36, no. 8, pp. 1586–1599, Aug 2014.

[49] D. Spielman, “Spectral graph theory,” in Combinatorial Scientific
Computing, ser. Computational Science. Chapman & Hall/CRC, 2012,
pp. 495–523.

[50] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids for
object detection,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 36, pp. 1532–1545, Aug. 2014.

[51] A. Milan, S. Roth, and K. Schindler, “Continuous energy minimization
for multitarget tracking,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 36, pp. 58–72, Jan. 2014.

Francesco Solera obtained a master degree
in computer engineering from the University of
Modena and Reggio Emilia in 2013. He is now
a PhD candidate within the ImageLab group
in Modena, researching on applied machine
learning and social computer vision.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

Simone Calderara received a computer engi-
neering master degree in 2004 and a PhD degree
in 2009 from the University of Modena and
Reggio Emilia, where he is now an assistant
professor within the Imagelab group. His current
research interests include computer vision and
machine learning applied to human behavior
analysis, visual tracking in crowded scenarios
and time series analysis for forensic applications.

Rita Cucchiara received her master degree in
electronic engineering and the PhD degree in
computer engineering from the University of
Bologna, Italy, in 1989 and 1992 respectively.
Since 2005, she is a full professor at University
of Modena and Reggio Emilia, Italy, where she
heads the ImageLab group and the SOFTECH-
ICT research center. Her research focuses on
pattern recognition, computer vision and multime-
dia.


	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Socially Constrained Clustering for Groups Detection
	5 Social Features for Social Groups
	5.1 From Physical Distances to Physical Identity
	5.2 Motion as an Indicator of Social Identity
	5.2.1 Temporal Causality
	5.2.2 Shape Similarity

	5.3 Common Goals from People Motion

	6 Learning Framework
	6.1 Supervised CC Through Structured Learning
	6.2 Batch Sequential Optimization
	6.3 Loss Function and Scoring Procedure
	6.4 Approximate Oracle

	7 Experimental Results
	7.1 Baseline and Benchmark Comparisons
	7.1.1 Quantitative Results
	7.1.2 Evaluation of Different Loss Functions

	7.2 Features Weight Learning on MPT-20x100
	7.2.1 The Need for Learning from Examples
	7.2.2 Do we Capture the Essence of Being a Group?

	7.3 Evaluating the Influence of Density Changes
	7.4 Performances on Real Detector and Tracker

	8 Conclusion
	References
	Biographies
	Francesco Solera
	Simone Calderara
	Rita Cucchiara


