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ABSTRACT  

Background. Monogenic hypertriglyceridemia (HTG) may result from mutations in some genes 

which impair the intravascular lipolysis of triglyceride (TG)-rich lipoproteins mediated by the 

enzyme Lipoprotein lipase (LPL). Mutations in the LPL gene are the most frequent cause of 

monogenic HTG (familial chylomicronemia) with recessive transmission. 

Methods. The LPL gene was resequenced in 149 patients with severe HTG (TG >10 mmol/L) and 

106 patients with moderate HTG (TG >4.5 and <10 mmol/L) referred to tertiary Lipid Clinics in 

Italy.   

Results. In the group of severe HTG, 26 patients (17.4%) were homozygotes, 9 patients (6%) were 

compound heterozygotes and 15 patients (10%) were simple heterozygotes for rare LPL gene 

variants. Single or multiple episodes of pancreatitis were recorded in 24 (48%) of these patients. 

There was no difference in plasma TG concentration between patients with or without a positive 

history of pancreatitis. Among moderate HTG patients, six patients (5.6%) were heterozygotes for 

rare LPL variants; two of them had suffered from pancreatitis. Overall 36 rare LPL variants were 

found, 15 of which not reported previously. Systematic analysis of close relatives of mutation 

carriers led to the identification of 44 simple heterozygotes (plasma TG 3.2 ± 4.1 mmol/L), none of 

whom had a positive history of pancreatitis.  

Conclusions. The prevalence of rare LPL variants in patients with severe or moderate HTG,  

referred to tertiary lipid clinics, was 50/149 (33.5%) and 6/106 (5.6%), respectively. Systematic 

analysis of relatives of mutation carriers is an efficient way to identify heterozygotes who may 

develop severe HTG.  
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INTRODUCTION. 

Lipoprotein lipase (LPL) is the enzyme, anchored to the endothelial cells of the capillaries, which is 

responsible for the intravascular hydrolysis of the triglycerides (TG) of TG-rich lipoproteins [1]. 

For full activity LPL requires co-factors such as: i) apolipoprotein C-II (apoC-II) and apolipoprotein 

A-V (apoA-V) which act as activators of LPL; ii) GPIHBP1 (glycosylphosphatidylinositol-

anchored High Density Lipoprotein-binding Protein 1) which binds LPL in the interstitial space and 

transports it from the site of synthesis across the endothelial cells to the capillary lumen [1, 2]. 

GPIHBP1 also acts as molecular platform for LPL mediated lipolysis of TG-rich lipoproteins on the 

endothelial surface of the capillaries [1, 2]. In addition, the secretion of active LPL is dependent 

upon the activity of the Lipase Maturation Factor 1 (LMF1), an ER resident five-transmembrane 

protein which interacts with LPL and promotes the maturation of LPL homodimers before the exit 

from ER [3].  

Individuals who are homozygous or compound heterozygous for loss of function mutations in the 

LPL, APOC2, APOA5, GPIHBP1 or LMF1 genes have a markedly decreased or absent LPL activity 

and as a consequence an impaired/delayed clearance of TG from plasma, with the accumulation of 

TG-rich lipoproteins (chylomicrons and VLDL) in plasma [4, 5]. The corresponding phenotype, 

often appearing in neonatal period/early infancy and designated familial chylomicronemia or Type I 

hyperlipoproteinemia, includes failure to thrive, eruptive xanthomas, lipemia retinalis, 

hepatosplenomegaly, recurrent abdominal pain and recurrent episodes of acute pancreatitis [6, 7]. 

This disorder has an estimated prevalence in the population of 1:1.000.000. Mutations in the LPL 

gene account for more than 95% of the cases of familial chylomicronemia reported so far in 

literature [5, 7]. Heterozygotes for LPL mutations have variable plasma TG levels, ranging from 

normal values to very high levels (>10 mmol/L) and decreased levels of high density lipoprotein- 

cholesterol (HDL-C) [6, 7]. Often heterozygotes develop severe hypertriglyceridemia (HTG) in 

association with co-morbidities, such as uncontrolled diabetes mellitus, elevated alcohol 
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consumption [6] or the presence of variants in other genes affecting TG metabolism [7]. The current 

view is that cumulative multiple genetic variants can increase the risk of HTG, especially in 

individuals who are heterozygous carriers of a loss of function mutation in one of the major genes 

affecting LPL-mediated lipolysis of TG-rich lipoproteins [8-10].                                                                                                                         

To date almost 180 LPL gene variants causing LPL deficiency have been reported (Supplemental 

Table S.10 and Supplemental references 1-53). In this study we describe the spectrum of mutations 

in the LPL gene we identified in patients with the clinical diagnosis of familial chylomicronemia or 

Type IV/V hyperlipidemia, referred to three Italian Lipid Clinics over the last decade.  
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METHODS 

 

Hypertriglyceridemic patients 

The LPL gene was resequenced in: i) 149 unrelated index subjects (101 males and 48 females, 38.1 

± 19.3 years of age; age range from 1 month to 77 years) with severe HTG (highest recorded 

plasma TG concentration >10 mmol/L: mean 27.8, median 18.4, interquartile range 13.0-26.6 

mmol/L); ii) 106 unrelated  subjects (94 males and 12 females, 42.9 ± 15.9 years of age; age range 

from 4 to 75 years) with moderate HTG (highest recorded plasma TG concentration >4.5 and <10 

mmol/L: mean 7.1, median 7.0, interquartile range 5.6-8.4 mmol/L). These patients were referred to 

three tertiary Lipid Clinics for “primary  HTG” and the clinical diagnosis of Type I (familial 

chylomicronemia), Type IV or Type V hyperlipidemia. Patients were Italian, with the exception of 

eight patients with the clinical diagnosis of familial chylomicronemia (Type I hyperlipidemia) 

coming from other countries (Belgium, Spain, Serbia, Panama, Equador, Morocco, Tunisia and 

Pakistan). In all patients the most common secondary forms of HTG (untreated/poorly controlled 

diabetes mellitus, obesity, alcohol abuse, chronic renal failure,  HIV, use of medications and high 

carbohydrate diet) were excluded. The diagnosis of acute pancreatitis was based on the presence of 

severe epigastric pain, elevation of serum amylase and lipase of  ≥ 3 times the upper limit of normal 

values and in most cases by characteristic findings of acute pancreatitis on contrast-enhanced 

computed tomography (CECT) and less commonly magnetic resonance imaging (MRI) or trans-

abdominal ultrasonography. 

The cohort of control subjects included 250 normolipidemic Italian subjects of both sexes. All 

patients, or parents in children’s cases, provided informed consent for DNA analysis. The study was 

approved by Ethics Committees of the participating institutions. The results of this survey have 

been included in the data base of the recently established Italian “Lipigen Consortium”.  
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Biochemical analysis 

Plasma lipids were measured as previously specified [11]. In some patients LPL activity in post-

heparin plasma was measured as reported [12] 

 

Analysis of the LPL gene 

Genomic DNA was extracted from peripheral blood leukocytes by a standard procedure. The exons 

and the promoter region of the LPL gene were amplified by polymerase chain reaction (PCR) and 

sequenced using appropriate primers [13]. Multiplex ligation-dependent probe amplification 

(MLPA) (SALSA MLPA P218-B1 LPL probe mix, MRC Holland, Amsterdam, the Netherlands) 

was used for the detection of major rearrangements of the LPL gene [13]. The PCR products were 

separated on an ABI PRISM 3100 sequencer and the data analysed by Peak Scanner™ software 

v1.0. Gene variants were designated according to the Human Genome Variation Society, 2013 

version (http://www.hgvs.org/mutnomen/recs-DNA.html). LPL protein sequence variants were 

designated according to http://www.hgvs.org/mutnomen/recs-prot.html: the numerical series of 

codons includes the sequence of the signal peptide (27 amino acid residues). 

In silico prediction of the effect of the novel missense variants of LPL was performed using 

PolyPhen-2 HumDiv and Hum Var (http://genetics.bwh.harvard.edu/pph2/), SIFT Human Protein 

and SIFT BLink (http://sift.jcvi.org/), Mutation Taster (www.mutationtaster.org), SNPs3D 

(www.snp3d.org) and SNAP (www.rostlab.org/services/SNAP). On the basis of in silico prediction, 

we arbitrarily considered the novel missense variants as pathogenic if indicated as such by 6 or 7 

algorithms, probably pathogenic if indicated as such by 4 or 5 algorithms and possibly pathogenic if 

indicated as such by at least 3 algorithms. In silico prediction of novel splice site variants was 

performed using Human Splicing Finder (www.umd.be/HSF/HSF.html), NetGene2 

(www.cbs.dtu.dk/service/NetGene2/) and Automated Splice Site and Exon Definition Analysis 

Analyses (ASSEDA) (http://splice.uwo.ca/).  
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Analysis of other candidate genes for HTG 

The sequence of other candidate genes involved in monogenic HTG (APOC2, APOA5, 

GPIHBP1and LMF1) was performed as previously reported [11] in all patients carrying novel LPL 

variants and in all index patients found to be simple heterozygous for rare LPL variants. Besides 

rare variants, only the following common SNPs known to have an effect on plasma TG are reported 

in Tables:    1) [c.106G>A, p.(D36N) rs1801177], [c.953A>G, p.(N318S) rs268] and  [c.1421C>G, 

p.(S474*)  rs328] of the LPL gene; 2) -1131C>T rs662799, [c.56C>G, p.(Ser19Trp) rs3135506] of 

the APOA5 gene;  3) [c.41G>T, p.(Cys14Phe) rs11538389] of the GPIHBP1 gene [14].  

  

Statistical analyses 

Statistical analyses were performed using SPSS (PASW Statistics 18, Release Version 18.0; SPSS, 

Inc., 2009, Chicago, IL, www.spss.com). Differences between groups for continuous variables were 

assessed by Mann-Whitney test. Triglyceride levels were logarithmically transformed before 

analysis. Triglyceride levels (mmol/L) were reported as median and interquartile range. Differences 

in the distribution of categorical variables were assessed by Fisher’s exact test. 
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RESULTS  

Clinical features of homozygotes/compound heterozygotes for rare LPL gene variants. 

Tables 1 and 2 show the list of 35 individuals with severe HTG, found to carry rare biallelic 

variants of the LPL gene in homozygous (patients 1-26) or compound heterozygous state (patients 

27-35). Among the unrelated index cases 21 were homozygotes and 9 compound heterozygotes. In 

the latter the presence of the two variants “in trans” (i.e. on different alleles) was confirmed by 

sequencing the LPL gene in the parents.  

Tables 1 and 2 also show the age at molecular diagnosis and the key clinical features of each 

patient. In approximately 1/3 of the patients molecular diagnosis was performed before 1 year of 

age. At the time of molecular diagnosis the history of a single or multiple episodes of acute 

pancreatitis was recorded in 19 out of 35 patients (54%). 

The age of the first episode of pancreatitis (as retrieved from the clinical records) was variable from 

7 months to 50 years of age (mean ± SD: 18.6 ± 15.9 years, median 17.0 years). In one patient 

pancreatitis occurred during pregnancy at 24 years of age. Table 3 shows the mean age and plasma 

lipids in homozygotes/compound heterozygotes. The mean and median plasma TG levels (recorded 

at the time of molecular diagnosis) was 48.7 ± 57.7 mmol/L and 28.2 mmol/L, respectively (range 

10.3 -326 mmol/L, interquartile range 21.1-56.7 mmol/L). There was no difference in plasma lipids 

between patients with or without a history of pancreatitis; pancreatitis positive patients were older 

than pancreatitis negative patients (Table 4). In children <1 year of age plasma TG level was higher 

than in the older children or in the adults, but the prevalence of pancreatitis was much lower (9% vs 

75%) ) (Supplemental Table S.1). 

 

New LPL gene variants found in homozygotes.    

Among the 21 unrelated index cases, seven were carriers of novel variants (patients 2, 3, 4, 8, 9, 23, 

26) and three (patients 1, 20, 22) were carriers of two variants [p.(G81D) and p.( Y329*)], reported 

previously by our group [15, 16] (Table 1 and Supplemental Tables S.4A, S.5, S.6 and S.7).  
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The results of the multiple in silico analyses were consistent in predicting that the two novel 

missense variants [p.(I109T) and p.(G237D)] and that previously reported p.(G81D) [15] were 

pathogenic (Supplemental Table S.4B). These substitutions affect highly conserved amino acid 

residues (Supplemental Tables S.4C and S.4D).  

The novel minute insertion/deletion [c.289_299delGCCGCCinsTTTGCCAAAA] and the novel 

minute deletion [c.651delT] (Table 1) cause a frameshift, predicted to result in the formation of 

truncated proteins devoid of function [p.(A97F*52) and p.(G218Vfs*34)].  

The two novel intronic variants [c.250-1G>C] and [c.1019-2A>T] were located in the acceptor 

splice sites of intron 2 and intron 6, respectively. In silico algorithms (Human Splicing Finder, 

NetGene2 and ASSEDA) indicated that these mutations obliterated the function of the acceptor 

splice site. The analysis of the abnormal transcripts generated in COS-1 cells, transfected with 

reporter minigenes harbouring theses mutations, confirmed these predictions (Supplemental 

material, splice site mutation analysis).  

Other homozygous patients were identified among family members of index cases (Families 9, 14, 

16, 17 and 19; patients 10, 16, 19, 21 and 24, respectively). All of them had severe HTG (Table 1).  

No rare variants of APOA5, APOC2, GPIHBP1 and LMF1 were found in homozygotes carrying 

novel LPL variants. Two patients (Table 1, patients 8 and 26) were heterozygous carriers of the 

common p.(S19W) substitution in APOA5, and one (Table 1, patient 24) was homozygous carrier 

of the p.(C14F) substitution in GPIHBP1. Post-heparin plasma LPL activity measured in some  

patients (Table 1,  patients 9, 11, 13, 15  and 20) was found to be <2% of the value of control 

plasma. 

 

Rare LPL gene variants found in compound heterozygotes.  

Among the 9 compound heterozygotes (15 different mutant alleles), three were carriers of five 

novel variants [c.88+1G>T, c.88+2T>G, p.(E143D), p.(C302S) and p.(H229R)] (patients 27, 29 

and 34) and one (patient 35) was a carrier of two variants [p.(N281Mfs*23) and LPL gene 
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deletion] recently described by our group [13] (Table 2 and Supplemental Tables S.3, S.4A, S.5, 

S.6 and S.7) 

Among the novel missense variants the p.(E143D) substitution was predicted to be benign or 

tolerated by six out of seven algorithms. However, since the genomic change (c.429G>T) 

underlying this missense variant involved the last nucleotide of exon 3, we thought that this 

mutation might affect the function of the donor splice site of intron 3. In silico analysis  (Human 

Splicing Finder, NetGene2 and ASSEDA) indicated a substantial decrease of the function of this 

donor splice site (leaky site) and possibly the activation of an alternative donor site in intron 3. 

Thus, it is reasonable to assume that this variant generates an abnormal mRNA. 

 The p.(C302S) substitution was predicted to be not tolerated or damaging by 5 out of 7 algorithms; 

however, the cysteine residue at position 302 is highly conserved in various species. The  

p.(H229R) substitution was predicted to be pathogenic by all algorithms; this histidine residue is 

also highly conserved (Supplemental Tables S.4B, S.4C, S.4.D). 

The two novel intronic variants [c.88+1G>T and c.88+2T>G], found in the same patient, affected 

the first and the second nucleotide respectively of the donor splice site of intron 1. In silico analysis 

(Human Splicing Finder, NetGene2 and ASSEDA) revealed that both mutations obliterated the 

function of the donor splice site of intron 1. No rare variants of APOA5, APOC2, GPIHBP1 and 

LMF1 were found in compound heterozygotes. 

 

Heterozygous carriers of rare LPL gene variants 

Twenty-one unrelated index cases (patients 36-56), mostly with the diagnosis of type V or type IV 

hyperlipidemia, were found to be simple heterozygous for rare LPL variants (Table 5). Their age 

ranged from 2 to 77 years (mean ± SD; 37.0 ± 21.4 years, median 41 years). Plasma TG level of 

these patients ranged from 4.9 to 42.1 mmo/L (median 19.4 mmol/L, interquartile range 9.2-25.4 

mmol/L); in 15 patients (71.4%) plasma TG level was above 10 mmol/L. Seven of these patients 

(five with severe HTG - patients 45, 49, 50, 51 and 56 - and two with moderate HTG – patients 36 
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and 37) had a positive history of at least one episode of pancreatitis (33%); four of them had a 

history of recurrent pancreatitis (patients 37, 49, 51, and 56) and one subject suffered from acute 

pancreatitis during pregnancy (patient 50). 

Fifteen different LPL variants were found, mostly reported previously (Table 5). Three novel 

missense variants  [p.(V64M), p.(R.116Q) and p.(S196C)] were identified (patients 39, 50 and 55). 

In silico analysis indicated that p.(V64M) and p.(R116Q) were probably pathogenic, while 

p.(S196C) was possibly pathogenic. Valine at position 64, arginine at position 116 and serine at 

position 196 are conserved in 12, 13 and 11 of the 13 species examined (Supplemental Tables S.4B, 

S.4C, S.4D). In addition one subject (patient 36) was found to be a carrier of the novel frameshift 

mutation (c.651delT),  detected in one unrelated homozygote (patient 8 in Table 1).  

Some patients were found to carry TG-raising SNPs of  LPL [c.106G>A, p.(D36N) and  

c.953A>G, p.(N318S)], APOA5 [-1131T>C and c.56C>G, p.(S19W)] and GPIHBP1 [c.41C>T, 

p.(C14F)] (Table 5). 

None of the rare LPL gene variants listed in Tables 1, 2 and 5 was found in a sample of 250 

normolipidemic individuals of the Italian population. 

 

Carriers of rare LPL gene variants identified in close relatives of index cases  

Mutation screening among relatives of index cases (homozygotes/compound heterozygotes and 

simple heterozygotes) led to the identification of 44 simple heterozygotes, aged from 4 to 75 years 

(mean ± SD; 41.2 ± 18.0 years, median 39 years) (Table 6). The number of relatives per family 

ranged from 1 to 4. Plasma TG levels of these subjects ranged from 0.6 to 19.2 mmol/L (median 1.9 

mmol/L, interquartile range 1.5-2.7 mmol/L); only in three subjects was plasma TG level above 10 

mmol/L. At the age of molecular diagnosis none of these subjects had a positive history of 

pancreatitis. 
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Carriers of other LPL gene variants found among subjects with severe or moderate HTG 

Among individuals with TG >10 mmol/L we found two brothers homozygous for a novel LPL 

variant [c.182C>T, p.(A61V)]. These patients (33 and 37 year-old, respectively) had a severe HTG 

(TG 19.1 and 18.1 mmol/L, respectively) associated with very low levels of HDL cholesterol (0.28 

and 0.41 mmol/L, respectively) and undetectable LPL activity in post-heparin plasma. In silico 

analysis indicated that p.(A61V) was benign or tolerated and the underlying nucleotide substitution 

in exon 2 (c.182C>T) did not generate a new donor splice site in exon 2, which could alter the 

splicing process. It is possible that c.182C>T, p.(A61V) is in linkage with a pathogenic mutation 

located elsewhere in the LPL gene which remains elusive. For these reasons we did not include 

these two patients in the list of homozygotes (Table 1). The sequence of the other HTG related 

genes  (APOA5, APOC2, GPIHBP1 and LMF1) in these two patients did not reveal the presence of 

rare variants. 

In the group of patients with severe HTG (TG >10 mmol/L) we found 7 carriers of common LPL 

SNPs: five heterozygotes and one homozygote for p.(D36N) and one heterozygote for p.(N318S). 

In these patients plasma TG level ranged from 10.3 to 25.5 mmol/L (mean ± SD: 15.9 ± 5.6 

mmol/L) (Supplemental Table S.8).  

Among subjects with moderate TG levels we found 9 heterozygotes and one homozygote for 

p.(D36N), and 10 heterozygotes for p.(N318S). Their TG levels ranged from 5.1 to 9.9 mmol/L 

(mean ± SD: 7.0 ± 1.5 mmol/L) (Supplemental Table S.8).  
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DISCUSSION 

In this study we describe rare variants of the LPL gene found in a group of patients with severe or 

moderate primary hypertriglyceridemia (HTG), referred to three tertiary Lipid Clinics in Italy. The 

group included 149 patients with plasma TG concentration >10 mmol/L and 106 patients with 

plasma TG >4.5 and <10 mmol/L. Rare variants of the LPL gene were identified in 51 unrelated 

patients (21 homozygotes, 9 compound heterozygotes and 21 simple heterozygotes) (overall 20%). 

More specifically 11.8% of patients were carriers of two mutant alleles and 8.2% were carriers of 

one mutant allele.  

The prevalence of monogenic LPL deficiency (presence of two mutant alleles) in the general 

population is estimated to be 1:1.000.000 and that of carriers of one mutant allele 1:500 [5]. The 

prevalence of subjects with LPL mutations found among patients with severe HTG varies 

considerably in different surveys. Wang et al. [17] found 6 carriers of rare LPL variants among 110 

non diabetic adult patients with severe HTG (mean plasma TG level 32.6 ± 26.5 mmol/L); four of 

them were heterozygous for variants known to be the cause of LPL deficiency (Supplemental Table 

S.9) Wright et al [18] among 19 adult patients with TG >14 mmol/L  found two carriers of rare LPL 

variants (Supplemental Table S.9). In a study of 107 adult German patients with plasma TG >10 

mmol/L (mean plasma TG level 19.9 ± 13.1 mmol/L) Evans et al. [19] found 11 heterozygous 

carriers of deleterious LPL alleles (10.3%) (Supplemental Table S.9). A higher percentage of 

carriers of rare LPL variants was observed by Surendran et al. [20] in the Netherlands. They found 

that 34% of their patients with severe HTG referred to a tertiary Lipid Centre were carriers of LPL 

mutations, as the sole underlying cause of HTG (Supplemental Table S.9). Finally, in a recent study 

which included 29 patients with biochemical and/or clinical traits of chylomicronemia,  Martin-

Campos et al. [21] identified 6 homozygotes, 7 compound heterozygotes and 3 simple 

heterozygotes for rare LPL variants (55%) (Supplemental Table S.9). In the present study carriers of 

two rare LPL variants were found exclusively among the patients with plasma TG >10 mmol/L. By 

considering the unrelated index cases only (Tables 1 and 2), this translates into a frequency of 
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20%; by considering the carriers of at least one mutant allele (homozygotes, compound 

heterozygotes and simple heterozygotes) (Tables 1, 2 and 5), the percentage of carriers of rare LPL 

variants among our patients with plasma TG >10 mmol/L was approximately 30%, a figure close to 

that found by Surendran et al. [20]. The discrepancy between our results and those of Wang et al. 

[17], Wright et al [18] and Evans et al. [19] is probably due to a clinical selection bias, as our 

patients (who included both children and adults) have been referred to tertiary Lipid Clinics that 

usually investigate in depth the most severe cases of dyslipidemias especially in children and young 

adults. The higher percentage of patients carrying rare LPL variants (55%) reported by Martin-

Campos et al. [21] may be explained by the young age of subjects with Type I hyperlipidemia they 

investigated (among  29 patients 9 were newborns and 11 children/adolescents). 

The level of plasma TG showed a considerable variation in our homozygotes and compound 

heterozygotes, ranging from 10.3 to 326 mmol/L. Interestingly, in children below 1 year of age the 

mean plasmaTG level was twice that found in older children and in adult patients taken together 

(Supplemental Table S.1). The reason for this striking difference is not clearly understood. It 

probably depends on the fact that the stringent feeding schedule of breast or bottle fed infants (and 

the short time periods between meals) facilitate the progressive accumulation of chylomicrons over 

time, while in older children and in adults longer fasting periods between meals (like overnight 

fasting) might delay or mitigate the rate of chylomicron accumulation in plasma.  

From the clinical stand point 19 homozygotes/compound heterozygotes (54%) had a positive 

history of at least one episode of acute pancreatitis. While pancreatitis was recorded only in 1 out of 

11 patients <1 year of age, it was documented in 18 out of 24 older children and adults (age range 

4-74 years), despite a lower mean level of plasma TG. In simple terms this would suggest that the 

longer the time of exposure to very high plasma TG levels, the higher is the chance to develop acute 

pancreatitis.   

Among unrelated index cases found to be simple heterozygous for LPL variants (Table 5) five had 

moderate HTG and 15 had severe HTG. Among these patients 7 out of 21 (33%) had a positive 
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history of pancreatitis; in five of them plasma TG level was >10 mmol/L. In this group of patients, 

three (15%) had type 2 diabetes, a condition that may have contributed to increase plasma TG and 

worsen an otherwise mild HTG related to the presence of one mutant LPL allele [6, 7]. It also 

conceivable that patients with severe HTG were carries of variants of other HTG related genes with 

a cumulative effect on the phenotype [8-10]. Indeed, this appears to be the case as almost 50% of 

these patients were found to carry SNPs of LPL and other HTG related genes known to have a 

plasma TG raising effect (Table 5). 

 

We performed LPL mutation screening in family members of index cases (homozygotes/compound 

heterozygotes and simple heterozygotes) and identified 44 simple heterozygotes (approximately 2 

subjects per family). Their age ranged from 4 to 75 years (mean 41.2 ± 18.0; median 39.0); their TG 

level ranged from 0.6 to 19.2 mmol/L (mean 3.2 ± 4.1, median 1.9, interquartile range 1.5-2.7 

mmol/L). The mean plasma TG level of these individuals was much lower than that recorded in the 

index cases found to be simple heterozygous for LPL mutations (Tables 6, 7), suggesting that in the 

latter other genetic or non-genetic factors contributed to HTG. None of the simple heterozygotes 

identified by the analysis of close relatives of index cases  had a positive history of pancreatitis, 

probably because their plasma TG was largely below 10 mmol/L, the alert threshold level for the 

risk of pancreatitis; in fact, only 3 individuals (two of whom belonging the same family) had plasma 

TG >10 mmol/L (Table 6).  

Overall, our observations indicate that among unrelated index cases carrying rare LPL gene variants 

with plasma TG >10 mmol/L the prevalence of pancreatitis (20/45, 44%) appears to be much higher 

than that (10-20%) reported in some large series of molecularly undefined hypertriglyceridemic 

subjects with severe HTG [22, 23].The prevalence of pancreatitis was even higher (24/50, 48%) if 

one considers all homozygotes (unrelated as well as related subjects), compound heterozygotes and 

simple heterozygotes with TG level >10 mmol/L.  
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As expected, we found a great allelic heterogeneity in carriers of rare LPL variants (Figure 1). Most 

mutations were single base changes in exons leading to 23 missense mutations (8 of which not 

reported previously). By using a battery of seven in silico algorithms we attempted to define the 

possible pathogenicity of the novel missense mutations. This analysis indicated that 4 mutations 

were pathogenic, 3 probably pathogenic, 1 possibly pathogenic and 1 non pathogenic (Supplemental 

Table S.4B). It should be stressed that seven out of eight variants involve amino acids that are 

highly conserved among species, suggesting that their substitution is likely to have an impact on the 

structure/function of the enzyme. One novel missense mutation [p.(E143D)], found in a compound 

heterozygote (patient 29 in Table 2), turned out to be tolerated/not deleterious. However, since the 

underlying genomic mutation (c.429G>T) changes the last nucleotide of exon 3, it is likely that this 

apparent missense mutation is in fact a splicing mutation as predicted by in silico analysis.    

We found one novel nonsense mutation as well as one minute deletion and one deletion/insertion 

predicted to cause a frameshift leading to a premature termination codon. Finally we report four 

novel intronic mutations affecting splice sites. Two of them (c.250-1G>C; c.1019-2A>T) were 

found to generate in vitro abnormal mRNAs, predicted to encode truncated proteins. The other two 

novel mutations (c.88+1G>T and c.88+2T>G) affected the highly conserved dinucleotide “GT” of 

the donor splice site of intron 1 and were predicted in silico to abolish the function of this site.  

 

One important aspect that emerged from our survey is the relatively large number of infants (<1 

year of age) present in our series of homozygotes/compound heterozygotes. This is not surprising as 

in recent years the resequencing of the LPL gene (and the other monogenic HTG candidate genes) 

has been extended to neonates with severe HTG, as a rapid and efficient procedure to assess the 

presence of genetic defects of the lypolytic cascade, (replacing other more laborious assays, such as 

the measure of LPL activity in post-heparin plasma) [7,13, 15, 21, 24-27]. This diagnostic workup 

in neonates with milky plasma avoids delays in therapeutic interventions (dietary changes, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

17 

 

extracorporeal treatment or exchange transfusion) [13, 15, 24-27], directed to reduce plasma TG 

and to prevent the occurrence of acute pancreatitis. 

 

Finally, on the basis of this survey we are now considering which of the patients listed in Tables 1 

and 2 are suitable candidates for the LPL gene therapy (Alipogene-Tiparvovec) [28], recently 

approved by the European Medicines Agency for the treatment of LPL deficiency. In this context 

LPL activity and mass will be measured in post-heparin plasma of homozygotes/compound 

heterozygotes with missense mutations and a positive history of recurrent pancreatitis to select 

those patients, who in principle, might have the best benefit (and possibly fewer complications) 

from this new treatment [7].       
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LEGEND TO FIGURE 

Figure 1. The figure shows the LPL gene mutations found in patients with severe or moderate 

hypertriglyceridemia identified in Italy. Novel mutations are reported in bold. 
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Table 1. Homozygotes for rare LPL gene variants identified in Lipid Clinics 

Patients Family Age Sex Clinical data TC HDL-C TG LPL: homozygous mutation [genotype], proprotein 

1 1 3mo F - 20.4 0.38 356.3 [c.242G>A], p.(G81D) 2 

2 2 36 M RPC, HM 10.7 1.03 41.3 [c.250-1G>C], p.[(T85Yfs*15, V84Efs*86)] 1 

3 3 2mo F 
Cerebral 

dysmorphism 
1.75 0.06 32.5 [c.289_299delGCCGCCinsTTTGCCAAAA], p.(A97Ffs*52) 1 

4 4 34 M PC at 24 8.09 0.46 18.8 [c.326T>C], p.(I109T) 1  

5 5 74 F RPC 6.98 0.93 21.1 [c.590G>T], p.(R197L) 

6 6 7mo F - 9.60 0.48 56.7 [c.590G>T], p.(R197L) 

7 7 53 F 
PC during 

pregnancy 
7.50 0.59 38.4 [c.644G>A], p.(G215E) 

8 8 4 M PC at 2y 5.97 0.52 18.4 [c.651delT], p.(G218Vfs*34) 1 / [c.56C>G], p.(S19W) (APOA5) 

9 
9 

47 M RPC, AH, LR 9.15 0.39 35.5 [c.710G>A], p.(G237D) 1 

10 44 M PC at 39y 6.98 0.59 24.4 [c.710G>A], p.(G237D) 1 

11 10 11 M SM 7.00 0.57 28.2 [c.808C>T], p.(R270C) 

12 11 44 M -. 6.45 0.82 18.4 [c.809G>A], p.(R270H) 

13 12 11 F - 4.91 0.57 23.2 [c.809G>A], p.(R270H) 

14 13 48 F HM 6.80 0.90 28.2 [c.829G>A], p.(D277N) 

15 14 37 M - 6.60 0.54 23.3 [c.835_836delCT], p.(L279Vfs*3) 
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16 29 F RPC at 1-14y 5.20 0.62 16.7 [c.835_836delCT], p.(L279Vfs*3) 

17 15 12 M 
PC at 12y, 

HSM 
7.75 0.45 67.8 [c.858T>A], p.(S286R) 

18 
16 

1mo F LR 21.2 0.41 139.9 [c.984G>T], p.(M328I) 

19 1mo M - 18.0 0.52 23.2 [c.984G>T], p.(M328I) 

20 

17 

7mo M 
HSM, PC at 

7mo 
7.71 0.26 29.7 [c.987C>A], p.(Y329*) 2 

21 64 F 
RPC at 50, 57, 

59, 61y 
5.17 0.31 24.9 [c.987C>A], p.(Y329*) 2 

22 18 36 F 
PC at 6y, 

HSM, EX 
6.20 0.36 28.9 [c.987C>A], p.(Y329*) 2 

23 
19 

26 M PC at 20y 5.09 0.46 15.5 [c.1019-2A>T], p.(V340Gfs*13) 1 

24 20 F PC at 6y 6.35 0.34 22.9 [c.1019-2A>T], p.(V340Gfs*13)1/ [c.41TT], p.(14FF) (GPIHBP1) 

25 20 17 F 
RPC since 14y, 

IDDM 
5.82 0.77 42.7 [c.1019-3C>A], p.(V340Gfs*13) 

26 21 44 F PC at 17y 4.99 0.67 10.3 [c.1260G>A], p.(W420*) 1 / [c.56C>G], p.(S19W) (APOA5) 

∗Age (years at molecular diagnosis); M = Males; F = Females; PC = pancreatitis; RPC = recurrent pancreatitis; HM = hepatomegaly; SM = splenomegaly; HSM = 

hepato-splenomegaly; LR = lipemia retinalis; EX = eruptive xanthomas, AH = arterial hypertension; IDDM = insulin dependent diabetes mellitus; Plasma lipid 

values are in mmol/L; Mutations in bold characters: 1 novel mutations, 2 mutations previously identified and reported by our group. 
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Table 2. Compound heterozygotes for rare LPL gene variants identified in Lipid Clinics 

Patients Family Age Sex Clinical data TC HDL-C TG LPL: mutations [genotype], proprotein 

27 22 29 F PC at 31y  12.2 0.36 124.3 [c.88+1G>T] + [88+2T>G] 1 

28 23 15 F RPC at 6-11y 7.76 0.64 33.9 [c.264T>A], p.(Y88*) + [c.662T>C], p.(I221T) 

29 24 35 M HM 4.39 0.33 17.3 [c.429G>T], p.(E143D) 1 + [c.905G>C], p.(C302S) 1 

30 25 6mo M - 4.00 0.77 28.2 [c.590G>A], p.(R197H) + [c.755T>C], p.(I252T) 

31 26 10mo F 
Failure to 

thrive 
12.0 0.50 59.7 [c.644G>A], p.(G215E) + [c.701C>T], p.(P234L) 

32 27 23 F RPC at 2-9y 4.70 0.90 16.3 [c.644G>A], p.(G215E) + [c.829G>A], p.(D277N) 

33 28 9mo F - 18.9 0.54 109.5 [c.644G>A], p.(G215E) + [c.984G>T], p.(M328I) 

34 29 1mo M HM 12.4 0.51 64.2 [c.686A>G], p.(H229R) 1 + [c.829G>A], p.(D277N) 

35 30 1mo M HM, LR, EX 17.3 0.46 140.7 [c.840delG], p.(N281Mfs*23) 2  + [LPL gene del], p.0 2 

∗Age (years at molecular diagnosis); M = Males; F = Females; PC = pancreatitis; RPC = recurrent pancreatitis; HM = hepatomegaly; SM = splenomegaly; HSM = 

hepato-splenomegaly; LR = lipemia retinalis; EX = eruptive xanthomas, AH = arterial hypertension; IDDM = insulin dependent diabetes mellitus; Plasma lipid 

values are in mmol/L; Mutations in bold characters: 1 novel mutations, 2 mutations previously identified and reported by our group. 
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Table 3. Plasma lipid profile in homozygotes/compound heterozygotes. 

 Mean ± SD Median Range IQ range 

Age (years) 22.7 ± 21.0 20.0 1mo-74y 8mo-37y 

TC (mmol/L) 8.84 ± 5.12 6.98 1.75-21.2 5.20-10.7 

HDL-C (mmol/L) 0.54 ± 0.21 0.52 0.06-1.03 0.39-0.64 

TG (mmol/L) 48.7 ± 57.7 28.2 10.3-326.3 21.1-56.7 

 

Table 4. Comparison between homozygotes/compound heterozygotes with and without history of 

pancreatitis. 

  
PC or RPC at the first 

episode 
No PC or RCP P* 

M/F 8/11 8/8 NS 

Age (years) mean ± SD 18.6 ± 15.9 11.8 ± 17.9  < 0.02 

TC (mmol/L) mean ± SD 7.07 ± 1.99 10.9 ± 6.78  NS 

HDL-C (mmol/L) mean ± SD 0.56 ± 0.22 0.52 ± 0.20 NS 

TG (mmol/L) median, IQ range 24.9 (18.4-38.4) 30.4 (23.2-85.9) NS 

*Mann-Whitney test, Fisher exact test. PC = pancreatitis, RPC = recurrent pancreatitis. 
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Table 5. Simple heterozygotes for rare LPL gene variants not related to homozygotes/compound heterozygotes. 

Patients Family Age* Sex Clinical data TC HDL-C TG LPL: mutations [genotype], proprotein 

36 31 53 M PC at 50y 5.87 0.82 6.89 
[c.651delT], p.(G218Vfs*34) 1 / [c.56C>G], p.(S19W) 

(APOA5) 

37 32 9 M RPC 4.91 0.39 9.00 [c.440_443delACTA], p.(N147Tfs*24) 

38 33 10 M - 3.80 0.49 7.91 [c.984G>T], p.(M328I)   

39 34 10 M - 3.75 1.16 5.08 [c.190G>A], p.(V64M) 1 + [c.1421C>G], p.(S474*) 

40 35 62 M HM 8.63 0.82 14.5 [c.998G>A], p.(R333H) 

41 36 47 M - 8.49 0.63 19.6 
[c.644G>A], p.(G215E) + [c.106G>A], p.(D36N) /  

[c.56C>G], p.(S19W) (APOA5).          

42 37 12 M - 4.63 0.77 26.0 [c.1279G>A], p.(A427T) + [c.1421C>G], p.(S474*) 

43 38 2 F - 5.01 0.50 24.7 
[c.1174C>G], p.(L392V) / [c.456G>A], p.(V153M) 

(APOA5) 

44 39 34 M - 5.43 0.87 9.34 [c.590G>T], p.(R197L) / [c.41G>T], p.(C14F) (GPIHBP1) 

45 40 48 M T2DM, PC 9.30 1.06 39.0 [c.755T>C], p.(I252T) 

46 41 32 M T2DM 7.86 0.62 27.6 [c.829G>A], p.(D277N) 

47 42 30 M CHD 8.53 0.90 19.4 [c.829G>A], p.(D277N) / [c.56C>G], p.(S19W) (APOA5) 

48 43 59 M - 7.50 0.87 10.5 [c.829G>A], p.(D277N) + [c.953A>G], p.(N318S) 
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49 44 43 F RPC 10.5 0.56 42.1 [c.829G>A], p.(D277N) / [–1131T>C] (APOA5)              

50 45 38 F 
PC during 

pregnancy 
11.5 1.08 13.0 [c.347G>A], p.(R116Q) 1 /  [–1131T>C] (APOA5)                         

51 46 47 F RPC, HM, LR 9.49 0.62 22.5 [c.88+2T>G] / [c.56C>G], p.(S19W) (APOA5)              

52 47 77 M 
AH, CHD, HM, 

T2DM 
7.03 0.72 22.2 [c.590G>T], p.(R197L) / [c.56C>G], p.(S19W) (APOA5)              

53 48 47 M HM 5.58 0.72 11.6 [c.829G>A], p.(D277N) 

54 49 41 M HM 9.12 0.72 24.3 
[c.809G>A], p.(R270H) + [c.1421C>G], p.(S474*)                  

/ [–1131T>C] (APOA5)                            

55 50 10 M HM 4.29 1.60 4.93 [c.586A>T], p.(S196C) 1 / [–1131T>C] (APOA5)                                 

56 51 66 M RPC, HM, PAD 11.1 0.67 35.6 
[c.829G>A], p.(D277N) / [–1131T>C] (APOA5) / 

[c.41TT], p.(14FF) (GPIHBP1)                                    

∗Age (years at molecular diagnosis); M = Males; F = Females; PC = pancreatitis; RPC = recurrent pancreatitis; HM = hepatomegaly; LR = lipemia retinalis; AH = 

arterial hypertension; T2DM = type 2 diabetes mellitus; CHD = coronary heart disease; PAD = peripheral arterial disease; Plasma lipid values in mmol/L; 

Mutations in bold characters: 1 novel mutations. 
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Table 6. Simple heterozygotes for rare LPL gene variants identified through systematic analysis of close relatives of index cases. 

Family Relatives Age Sex Clinical data TC HDL-C TG LPL: mutation [genotype], proprotein 

1 
Father 29 M HM 4.81 0.90 1.78 [c.242G>A], p.(G81D) 2 

Mother 28 F - 4.37 1.08 1.08 [c.242G>A], p.(G81D) 2 

2 
Father 60 M - 4.94 0.64 3.65 [c.250-1G>C], p.[(T85Yfs*15, V84Efs*86)] 1 

Mother 58 F - 3.98 0.82 1.82 [c.250-1G>C], p.[(T85Yfs*15, V84Efs*86)] 1 

3 
Father 44 M - 4.60 1.03 2.64 [c.289_299delGCCGCCinsTTTGCCAAAA], p.(A97F*52) 1 

Mother 39 F - 5.90 1.16 2.33 [c.289_299delGCCGCCinsTTTGCCAAAA], p.(A97F*52) 1 

8 
Father 34 M - 6.38 1.14 2.28 [c.651delT], p.(G218Vfs*34) 1 

Mother 32 F - 3.83 1.26 0.64 [c.651delT], p.(G218Vfs*34) 1 

9 

Father 72 M - 5.89 1.08 2.57 [c.710G>A], p.(G237D) 1 

Mother 70 F - 5.40 1.26 2.35 [c.710G>A], p.(G237D) 1 

Daughter 22 F - 4.96 1.50 2.17 [c.710G>A], p.(G237D) 1 

Daughter 20 F - 4.78 1.34 1.18 [c.710G>A], p.(G237D) 1 

14 
Father 65 M - 5.27 1.11 2.78 [c.835_836delCT], p.(L279Vfs*3) 

Mother 61 F - 6.85 1.06 2.55 [c.835_836delCT], p.(L279Vfs*3) 

15 
Father 37 M - 6.46 0.87 4.52 [c.858T>A], p.(S286R) 

Mother 34 F - 4.91 1.16 1.80 [c.858T>A], p.(S286R) 

19 Father 53 M - 4.81 0.90 1.93 [c.1019-2A>T], p.(V340Gfs*13) 1 
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Mother 51 F - 4.65 1.47 1.04 [c.1019-2A>T], p.(V340Gfs*13) 1 

22 
Father 67 M - 5.04 1.26 2.01 [c.88+1G>T] 

Mother 64 F AH 4.83 1.24 2.61 [c.88+2T>G] 

23 
Father 44 M - 5.27 1.03 2.89 [c.264T>A], p.(Y88*) 

Mother 44 F - 5.12 1.19 2.09 [c.662T>C], p.(I221T) 

24 
Father 65 M - 4.83 1.14 1.54 [c.429G>T], p.(E143D) 1 

Mother 63 F - 5.35 1.24 0.56 [c.905G>C], p.(C302S) 1 

25  
Father 35 M - 4.89 0.85 1.87 [c.590G>A], p.(R197H) 

Mother 28 F - 5.43 1.14 1.42 [c.755T>C], p.(I252T) 

26 
Father 30 M - 5.40 0.98 3.05 [c.701C>T], p.(P234L) 

Mother 25 F - 4.60 1.24 1.87 [c.644G>A], p.(G215E) 

27 
Father 53 M AH 5.94 1.00 2.94 [c.829G>A], p.(D277N) 

Mother 51 F - 4.45 1.29 1.92 [c.644G>A], p.(G215E) 

28 
Father 34 M - 6.38 1.26 1.21 [c.644G>A], p.(G215E) 

Mother 30 F - 5.35 1.55 0.95 [c.984G>T], p.(M328I) 

29 
Father 42 M - 6.10 0.95 1.94 [c.686A>G], p.(H229R) 1 

Mother 31 F - 4.32 1.16 1.50 [c.829G>A], p.(D277N) 

30 Father 39 M - 5.06 1.47 1.00 [LPL gene del], p.0 2 
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Mother 36 F - 4.60 1.56 0.86 [c.840delG], p.(N281Mfs*23) 2   

33 Brother 14 M - 4.60 0.67 7.91 [c.984G>T], p.(M328I) 

45 Father 75 M T2DM, AH 5.74 1.03 4.49 [c.347G>A], p.(R116Q) 1 

47 Son 48 M AH, HM 7.00 0.67 19.2 [c.590G>T], p.(R197L) 

49 

Daughter 15 F - 5.45 1.29 1.64 [c.809G>A], p.(R270H) 

Son 8 M - 4.00 1.13 1.76 [c.809G>A], p.(R270H) 

Daughter 4 F - 4.08 0.98 1.46 [c.809G>A], p.(R270H) 

51 
Daughter 41 F - 6.44 0.83 12.5 [c.829G>A], p.(D277N)               

Grandchild 20 M - 8.92 0.64 19.2 [c.829G>A], p.(D277N)               

M = Males; F = Females; HM = hepatomegaly; AH = arterial hypertension; T2DM = type 2 diabetes mellitus; Plasma lipid values in mmol/L; Mutations in bold 

characters: 1 novel mutations, 2 mutations previously identified and reported by our group. 
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Table 7. Comparison between simple heterozygotes index cases and simple heterozygotes identified 

through systematic analysis of close relatives of index cases. 

 
Heterozygotes                     

Index cases 

Heterozygotes related to 

Index cases* 
P† 

M/F 17/4 22/22 0.03 

Null alleles/missense 3/18 15/29 NS 

Age (years) mean ± SD 37.0 ± 21.4 41.2 ± 18.0 NS 

TC (mmol/L) mean ± SD 7.25 ± 2.45                 5.27 ± 0.95                 0.003                         

HDL-C (mmol/L) mean ± SD 0.79 ± 0.27                     1.10 ± 0.23                    0.0001            

TG (mmol/L) median, IQ range 19.4 (9.2-25.4) 1.93 (1.47-2.74)  0.0001 

*Identified through systematic analysis of close relatives of index cases listed in Tables 1, 2 and 5.                 
†Fisher exact test and Mann-Whitney test. 
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HIGHLIGHTS  

  

• The LPL gene was sequenced in individuals with severe/moderate hypertriglyceridemia 

• Rare LPL variants were found in 33.5% of subjects with severe hypertriglyceridemia 

• 26 patients were homozygotes, 9 compound heterozygotes and 21 simple heterozygotes  

• Thirty six rare LPL variants were identified, 15 of which not reported previously 

• Screening of patients’ relatives led to the identification of 44 simple heterozygotes  
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SUPPLEMENTAL MATERIAL 

 

Table S.1. Plasma lipid in homozygotes/compound heterozygotes <1 and  >1 year of age.                                                                                                         

 < 1 year (1-10 months) § > 1 year (4-74 years) P* 

N. 11 24  

TC (mmol/L) mean ± SD 13.3 ± 7.0 6.8 ± 1.9  0.007 

HDL-C (mmol/L) mean ± SD 0.44 ± 0.17 0.59 ± 0.21 NS 

TG (mmol/L) median, IQ range 59.7 (29.7-109.5) 23.9 (18.4-35.1) 0.001 

Percent with PC or RPC 1/11 (9.0%) 18/24 (75.0%) 0.001 

*Mann-Whitney test, Fisher exact test. PC = pancreatitis, RPC = recurrent pancreatitis. §Brest-fed or bottle fed-infants.
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LPL (8p22) mutations 

LPL gene (GenBank-NCBI accession no.): NG_008855.1, GI 210032137, ENSG00000175445 

LPL mRNA (GenBank-NCBI accession no.): NM_000237.2, GI 145275217, ENST00000311322    

LPL protein (GenBank-NCBI accession no.): NP_000228.1, GI 4557727, ENSP00000309757, UniPro P06858; signal peptide: 27 amino acids. 

 
LPL MUTATIONS FOUND IN ITALY 

 

Table S.2. Sequence variation in the promoter 

Location Effect  

From putative transcription site (at –188bp from ATG)* c.DNA (from ATG)  
Previously reported:                 

S. Ref. 

-95 G>T -283 G>T No effect on promoter activity 4 

-93 T>G -281 T>G Decreases promoter activity by 40-50%  4, 35, 39 

114 G>A -61 G>A ? NEW 

References for reviews are reported in RED 

Table S.3. Large Rearrangements (Exon Deletions) 

Location cDNA (from ATG) Proprotein 
Ethnic origin                                                                                        

(No. of families, No. of patients and genetic status) 

Previously reported:                 

S. Ref. 

Ex1_10del c.1_3377del p.0 Italian (1, 1CHE, 1HE) 46 
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Table S.4A. Missense mutations 

Exon cDNA Proprotein 
Ethnic origin                                                                                        

(No. of families, No. of patients and genetic status) 

Previously reported:                                                              

S. Ref. 

2 c.106 G>A p.(D36N) Italian (19, 2HO, 15HE) 1, 2, 9, 26, 35, 36, 38, 39, 48 

2 c.182 C>T p.(A61V) Italian (2, 2HO, 4HE) NEW 

2 c.190 G>A p.(V64M) Italian (1, 1HE) NEW 

2 c.242 G>A p.(G81D) Italian (2, 1HO, 2HE) 42 

3 c.326 T>C p.(I109T) Italian (2, 1HO, 2HE) NEW 

3 c.347 G>A p.(R116Q) Italian (1, 2HE) NEW 

3 c.429 G>T p.(E143D) Italian (1, 1CHE, 1HE) NEW 

5 c.586 A>T p.(S196C) Ecuadorian (1, 1HE) NEW 

5 c.590 G>A p.(R197H) Italian (1, 1CHE, 1HE) 26, 38, 39 

5 c.590 G>T p.(R197L) Italian (4, 2HO, 7HE) 12, 14, 39 

5 c.644 G>A p.(G215E) 
Italian (4, 1HO, 2CHE, 4HE), Spanish (1, 1CHE, 1HE),              

Panamanian (1, 1CHE, 1HE) 

1, 2, 9, 11, 16, 17, 22, 27, 34, 36, 38, 39, 43, 48, 

49, 51 

5 c.662 T>C p.(I221T) Belgian (1, 1CHE, 1HE) 1, 2, 9, 16, 21, 22, 34, 36, 37, 39 

5 c.686 A>G p.(H229R) Italian (1, 1CHE, 1HE) NEW 

5 c.701 C>T p.(P234L) Panamanian (1, 1CHE, 1HE) 1, 2, 9, 22, 34, 39, 41, 48 
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5 c.710 G>A p.(G237D) Italian (2, 2HO, 4HE) NEW 

5 c.755 T>C p.(I252T) Italian (2, 1CHE, 2HE) 1, 2, 9, 35, 36, 38, 39 

6 c.808 C>T p.(R270C) Serbian (2, 1HO, 2HE) 1, 2, 9, 16, 34, 38, 39, 48 

6 c.809 G>A p.(R270H) Italian (5, 2HO, 1CHE, 5HE) 1, 2, 9, 16, 34, 38, 39, 44, 47 

6 c.829 G>A p.(D277N) Italian (9, 1HO, 1CHE, 9HE), Spanish (1, 1CHE, 1HE) 1, 2, 9, 38, 39, 48 

6 c.858 T>A p.(S286R) Moroccan (2, 1HO, 2HE) 2, 9, 39 

6 c.905 G>C p.(C302S) Italian (1, 1CHE, 1HE) NEW 

6 c.953 A>G p.(N318S) Italian (13, 13HE) 1, 2, 9, 23, 26, 34, 35, 36, 38, 39, 45, 48 

6 c.984 G>T p.(M328I) Italian (6, 2HO, 1CHE, 6HE) 36, 39 

6 c.998 G>A p.(R333H) Italian (1, 1HE) 48 

8 c.1174 C>G p.(L392V) Italian (1, 1HE) 2, 9, 39 

8 c.1279 G>A p.(A427T) Italian (1, 1HE) 38, 39 

References for reviews are reported in RED 
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Table S.4B. In silico analysis of missense mutations 

Exon cDNA Proprotein 
PolyPhen-2 

Hum Div 

Poly-Phen-2 

Hum Var 

SIFT 

Human Protein 

SIFT 

Blink 
Mutation Testing 

2 c.106 G>A p.(D36N) Benign Benign Tolerated Tolerated SNP 

2 c.182 C>T p.(A61V) Benign Benign Tolerated Tolerated SNP 

2 c.190 G>A p.(V64M) Probably Possibly Damaging Not tolerated SNP 

2 c.242 G>A p.(G81D) Probably Probably Damaging Not tolerated Disease causing 

3 c.326 T>C p.(I109T) Probably Probably Damaging Not tolerated Disease causing 

3 c.347 G>A p.(R116Q) Probably Probably Damaging Tolerated Disease causing 

3 c.429 G>T p.(E143D) Benign Benign Damaging Tolerated SNP 

5 c.586 A>T p.(S196C) Probably Probably Damaging Tolerated SNP 

5 c.590 G>A p.(R197H) Probably Probably Damaging Not tolerated SNP 

5 c.590 G>T p.(R197L) Probably Possibly Tolerated Not tolerated SNP 

5 c.644 G>A p.(G215E) Probably Probably Tolerated Tolerated Disease causing 

5 c.662 T>C p.(I221T) Probably Probably Damaging Not tolerated Disease causing 

5 c.686 A>G p.(H229R) Probably Probably Damaging Not tolerated Disease causing 

5 c.701 C>T p.(P234L) Probably Probably Damaging Not tolerated Disease causing 
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5 c.710 G>A p.(G237D) Probably Probably Damaging Not tolerated Disease causing 

5 c.755 T>C p.(I252T) Possibly Possibly Damaging Not tolerated Disease causing 

6 c.808 C>T p.(R270C) Possibly Possibly Damaging Not tolerated Disease causing 

6 c.809 G>A p.(R270H) Probably Probably Damaging Not tolerated Disease causing 

6 c.829 G>A p.(D277N) Possibly Benign Damaging Not tolerated Disease causing 

6 c.858 T>A p.(S286R) Possibly Possibly Damaging Tolerated Disease causing 

6 c.905 G>C p.(C302S) Benign Benign Damaging Not tolerated Disease causing 

6 c.953 A>G p.(N318S) Benign Benign Tolerated Tolerated Disease causing 

6 c.984 G>T p.(M328I) Benign Benign Damaging Tolerated Disease causing 

6 c.998 G>A p.(R333H) Benign Benign Damaging Tolerated Disease causing 

8 c.1174 C>G p.(L392V) Probably Probably Damaging Tolerated Disease causing 

8 c.1279 G>A p.(A427T) Benign Benign Tolerated Tolerated SNP 

 

Table S.4B (continuation). In silico analysis of missense mutations 

Exon cDNA Proprotein SNPs3D SNAP Overall prediction of pathogenicity 

2 c.106 G>A p.(D36N) Non-deleterious Neutral Non pathogenic 

2 c.182 C>T p.(A61V) Non-deleterious Neutral Non pathogenic 
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2 c.190 G>A p.(V64M) Deleterious Neutral 4/7 Probably pathogenic 

2 c.242 G>A p.(G81D) Deleterious Non-neutral 7/7 Pathogenic 

3 c.326 T>C p.(I109T) Deleterious Non-neutral 7/7 Pathogenic 

3 c.347 G>A p.(R116Q) Non-deleterious Neutral 4/7 Probably pathogenic 

3 c.429 G>T p.(E143D) Non-deleterious Neutral Non pathogenic 

5 c.586 A>T p.(S196C) Non-deleterious Neutral 3/7 Possibly pathogenic 

5 c.590 G>A p.(R197H) Deleterious Non-neutral 6/7 Pathogenic 

5 c.590 G>T p.(R197L) Deleterious Non-neutral 5/7 pathogenic 

5 c.644 G>A p.(G215E) Non-deleterious Neutral 3/7 Possibly pathogenic 

5 c.662 T>C p.(I221T) Deleterious Non-neutral 7/7 Pathogenic 

5 c.686 A>G p.(H229R) Deleterious Non-neutral 7/7 Pathogenic 

5 c.701 C>T p.(P234L) Deleterious Non-neutral 7/7 Pathogenic 

5 c.710 G>A p.(G237D) Deleterious Non-neutral 7/7 Pathogenic 

5 c.755 T>C p.(I252T) Non-deleterious Non-neutral 6/7 Pathogenic 

6 c.808 C>T p.(R270C) Deleterious Non-neutral 7/7 Pathogenic 

6 c.809 G>A p.(R270H) Deleterious Non-neutral 7/7 Pathogenic 
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6 c.829 G>A p.(D277N) Deleterious Non-neutral 6/7 Pathogenic 

6 c.858 T>A p.(S286R) Deleterious Non-neutral 6/7 Pathogenic 

6 c.905 G>C p.(C302S) Deleterious Non-neutral 5/7 Probably pathogenic 

6 c.953 A>G p.(N318S) Non-deleterious Neutral Non pathogenic 

6 c.984 G>T p.(M328I) Non-deleterious Non-neutral 3/7 Possibly pathogenic 

6 c.998 G>A p.(R333H) Non-deleterious Neutral 2/7 Pathogenic [48] 

8 c.1174 C>G p.(L392V) Deleterious Non-neutral 6/7 Pathogenic 

8 c.1279 G>A p.(A427T) Non-deleterious Neutral Non pathogenic 

The in silico prediction for novel missense mutations is reported in bold characters. 

 

Table S.4C. Residue conservation during evolution 

 Position 

 36 61 64 81 109 116 143 196 197 215 221 229 234 237 252 270 277 286 302 318 328 333 392 427 

Homo sapiens D A V G I R E S R G I H P G I R D S C N M R L A 

Baboon D A V G I R E S R G I H P G I R D S C N M R L A 

Chimp D A V G I R E S R G I H P G I R D S C N M R L A 

Bos taurus D T V G I R A S R G I H P G I R D S C N M R L D 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
10

Sus scrofa D T V G I R A S R G I H P G I R D S C N M R L A 

Horse D T V G I R A S R G I H P G I R D S C N M R L T 

Sheep D T V G I R A S R G I H P G I R D S C N M R L D 

Guinea pig D T V G I R E S R G I H P G I R D S C N M R L T 

Cat D T V G I R A S R G I H P G I R D S C N M R L T 

Mouse D A V G I R E S R G I H P G I R D S C N M R L V 

Rat D A V G I R E S R G I H P G I R D S C N M R L V 

Chicken G M L G I R E I R G I H P G I R D S C N M R L T 

Frog S E V G I R D I I G I H P G I R D S C N M R L N 

 

Table S.4D. Amino acid conservation during evolution, changes in polarity, molecular weight and hydropathy index 

Exon cDNA Proprotein 
Conservation 

across species 
Amino acid substitution 

    Structure MW Hydropathy index† 

2 c.106 G>A p.(D36N) 11/13 Charged(-)-polar > Uncharged polar 133.11 > 132.12 -3.5 > -3.5 

2 c.182 C>T p.(A61V) 5/13 Nonpolar > Nonpolar 89.10 > 117.15 1.8 > 4.2 

2 c.190 G>A p.(V64M) 12/13 Nonpolar > Nonpolar 117.15 > 149.21 4.2 > 1.9 
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2 c.242 G>A p.(G81D) 13/13 Nonpolar > Charged(-)-polar 75.07 > 133.11 -0.4 > -3.5 

3 c.326 T>C p.(I109T) 13/13 Nonpolar > Uncharged polar 131.18 > 119.12 4.5 > -0.7 

3 c.347 G>A p.(R116Q) 13/13 Charged(+)-polar > Uncharged polar 174.20 > 146.15 -4.5 > -3.5 

3 c.429 G>T p.(E143D) 7/13 Charged(-)-polar > Charged(-)-polar 147.13 > 133.11 -3.5 > -3.5 

5 c.586 A>T p.(S196C) 11/13 Uncharged polar > Uncharged polar 105.09 > 121.16 -0.8 > 2.5 

5 c.590 G>A p.(R197H) 12/13 Charged(+)-polar > Charged(+)-polar 174.20 > 155.16 -4.5 > -3.2 

5 c.590 G>T p.(R197L) 12/13 Charged(+)-polar > Nonpolar 174.20 > 131.18 -4.5 > 3.8 

5 c.644 G>A p.(G215E) 13/13 Nonpolar > Charged(-)-polar 75.07 > 147.13 -0.4 > -3.5 

5 c.662 T>C p.(I221T) 13/13 Nonpolar > Uncharged polar 131.18 > 119.12 4.5 > -0.7 

5 c.686 A>G p.(H229R) 13/13 Charged(+)-polar > Charged(+)-polar 155.15 > 174.20 -3.2 > -4.5 

5 c.701 C>T p.(P234L) 13/13 Nonpolar > Nonpolar 115.13 > 131.18 -1,6 > 3.8 

5 c.710 G>A p.(G237D) 13/13 Nonpolar > Charged(-)-polar 75.07 > 133.11 -0.4 > -3.5 

5 c.755 T>C p.(I252T) 13/13 Nonpolar > Uncharged polar 131.18 > 119.12 4.5 > -0.7 

6 c.808 C>T p.(R270C) 13/13 Charged(+)-polar > Uncharged polar 174.20 > 121.16 -4.5 > 2.5 

6 c.809 G>A p.(R270H) 13/13 Charged(+)-polar > Charged(+)-polar 174.20 > 155.15 -4.5 > -3.2 

6 c.829 G>A p.(D277N) 13/13 Charged(-)-polar > Uncharged polar 133.11 > 132.12 -3.5 > -3.5 
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6 c.858 T>A p.(S286R) 13/13 Uncharged polar > Charged(+)-polar 105.09 > 174.20 -0.8 > -4.5 

6 c.905 G>C p.(C302S) 13/13 Uncharged polar > Uncharged polar 121.16 > 105.09 2.5 > -0.8 

6 c.953 A>G p.(N318S) 13/13 Uncharged polar > Uncharged polar 132.12 > 105.09 -3.5 > -0.8 

6 c.984 G>T p.(M328I) 13/13 Nonpolar > Nonpolar 149.21 > 131.18 1.9 > 4.5 

6 c.998 G>A p.(R333H) 13/13 Charged(+)-polar > Charged(+)-polar 174.20 > 155.15 -4.5 > -3.2 

8 c.1174 C>G p.(L392V) 13/13 Nonpolar > Nonpolar 131.18 > 117.15 3.8 > 4.2 

8 c.1279 G>A p.(A427T) 4/13 Nonpolar > Uncharged polar 89.10 > 119.12 1.8 > -0.7 

†Kyte J and Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157: 105-132.  

 

Table S.5. Nonsense mutations 

Exon cDNA Proprotein 
Ethnic origin                                                           

(No. of families, No. of patients and genetic status) 

Previously reported:                                            

S. Ref. 

3 c.264 T>A p.(Y88*) Belgian (1, 1CHE, 1HE)  1, 2, 9, 16, 39 

6 c.987 C>A p.(Y329*) Italian (4, 3HO, 9HE) 8, 9, 39 

8 c.1260 G>A p.(W420*) Italian (2, 1HO, 2HE) NEW 

9 c.1421 C>G p.(S474*) Italian (3, 3HE) 1, 2, 9, 11, 16, 30, 35, 36,  38, 39, 48 

References for reviews are reported in RED  
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Table S.6. Insertions/deletions of a single or few nucleotides 

Exon cDNA Proprotein 
Ethnic origin                                                                                   

(No. of families, No. of patients and genetic status) 

Previously reported:                 

S. Ref. 

3 c.289-294delGCCGCC insTTTGCCAAAA p.(A97Ffs*52) Pakistani (2, 1HO, 2HE) NEW 

4 c.440-443delACTA p.(N147Tfs*24) Italian (1, 1HE) 2, 9, 36, 39 

5 c.651delT p.(G218Vfs*34) Italian (3, 1HO, 3HE) NEW 

6 c.835-836delCT p.(L279Vfs*3) Italian (2, 2HO, 2HE) 9, 39 

6 c.840delG p.(N281Mfs*23) Italian (1, 1CHE, 1HE) 46 

References for reviews are reported in RED  
 

 

Table S.7. Splicing mutations 

cDNA 
mRNA analysis†                               

in silico analysis‡ 

Proprotein                                                     

From mRNA analysis†                         

Predicted in silico‡                                 

Ethnic origin                                    

(No. of families, No. of patients 

and genetic status) 

Previously 

reported:                 

S. Ref. 

IVS1 c.88 +1G>T c.88+1_418ins‡ p.(Q30Rfs*45)‡ Italian (1, 1CHE, 1HE) NEW 

IVS1 c.88 +2T>G c.88+1_418ins‡ p.(Q30Rfs*45)‡ Italian (2, 1CHE, 2HE) NEW 

IVS2 c.250 –1G>C 
r.[250-1g>c; 250-72_250-1ins, 

250_256del]† 
p.[(T85Yfs*15, V84Efs*86)]† Italian (2, 1HO, 2HE) NEW 
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IVS6 c.1019 –2A>T r.1019_1139del† p.(V340Gfs*13)† Italian (2, 2HO, 2HE) NEW 

IVS6 c.1019 –3C>A 
r.[1019_1139del,             

776_1427del]† 
p.[(V340Gfs*13, D259Efs*13)]† Tunisian (2, 1HO, 2HE) 9, 39 

DS: donor splice site. AS: acceptor splice site. † documented by mRNA analysis; ‡ Overall prediction from in silico analysis performed with Human Splicing 

Finder, NetGene2 and Automated Splice Site Analyses. References for reviews are reported in RED  

 

Table S.8. Hypertriglyceridemic subjects carrying common LPL variants  

  Subjects with severe HTG (TG >10 mmol/L) Subjects with moderate HTG (TG >4.5<10 mmol/L) 

LPL variants n. 5 HE p.(D36N), n. 1 HO p.(D36N), n. 1 HE p.(N318S) n. 9 HE p.(D36N), n. 1 HO p.(D36N), n. 10 HE p.(N318S) 

M/F 3/4 18/2 

Age (years) 33.1 ± 10.5 42.4 ± 13.4 

BMI (kg/m2) 25.5 ± 4.5 25.4 ± 3.1 

Total cholesterol (mmol/L) 7.09 ± 0.96 6.20 ± 0.96 

HDL cholesterol (mmol/L) 0.75 ± 0.12 0.76 ± 0.15 

Triglycerides (mmol/L) 15.9 ± 5.7 7.0 ± 1.5 
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Table S.9. Previously reported rare and common LPL variants identified in patients with severe or moderate hypertriglyceridemia. 

Suppl. 

References 

Wang J et al.          

2007  [22] 

Wright WT et al. 

2008 [26] 

Evans D et al.                                                                    

2011 [36] 

Surendran RP et al. 

2012 [38] 

Martin-Campos et al. 

2014 [48]  

Subjects 

screened  

n. 110 with                    

TG >10mmol/L 

n. 19 with                 

TG >14 mmol/L 

n. 107 with                

TG >10 mmol/L 

n. 206 with         

TG <10 mmol/L 

n. 109 with 

Type III 

n. 86 with                

TG > 10 mmol/L 

n. 29 with 

chylomicronemia 

Age (years) 49.9 ± 12.9 50.0 ± 12.0 46.4 ± 10.8 44.4 ± 12.5 49.3 ± 11.3 41 (1-69) 

Newborn n. 9  

Children n. 9   

Adolescents n. 2  

Adults n. 9      

HO - n. 1 p.(D36N) - - - n. 1 p.(G161E) n. 2 p.(D36N) 

„ - - - - - n.1 p.(G166S) n. 2 p.(D177N) 

„ - - - - - n. 3 p.(G181S) n. 3 p.(G215E) 

“ - - - - - n. 5 p.(D183G) n. 1 p.(P234L) 

“ - - - - - n. 1 p.(P184R) - 

“ - - - - - n. 2 p.(N318S) - 

“ - - - - - n. 2 p.(L380Afs*2) - 

CHE - 
n. 1 p.(D36N) + 

p.(N318S) 

n. 1 p.(D36N) + 

p.(Y289*) 

n. 1 p.(S293P) + 

p.(N318S) 

n. 1 p.(I252T) + 

p.(S474*) 

n. 2 p.(V96L) + 

p.(G215E) 

n. 1 p.(Q16Efs*23) + 

p.(G215E) 

“ - 
n. 1 p.(N318S) + 

p.(V340I) 

n. 1 p.(V96L) + 

p.(G215E) 
- - 

n. 1 p.(V96L) + 

p.(R270H) 

n. 1 p.(D36N) + 

p.(G215E) 
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“ - - 
n. 1 p.(V96L) + 

p.(N318S) 
- - 

n. 1 p.(I252T) + 

p.(R270H) 

n. 1 p.(D36N) + 

p.(S474*) 

“ - - 
n. 1 p.(I252T) + 

p.(S474*) 
- - 

n. 1 p.(D277N) + 

p.(S278C) 

n. 1 p.(W113G) + 

p.(W421*) 

“ - - - - - - 
n.1 p.(A125Gfs*22) + 

p.(H273R) 

“ - - - - - - 
n. 1 p.(G215E) + 

p.(P234L) 

“ - - - - - - 
n. 1 p.(G215E) + 

p.(R333H) 

“ - - - - - - 
n. 1 p.(G215E) + 

p.(D277N) 

“ - - - - - - 
n. 1 p.(P234L) + 

p.(H273R) 

HE n. 1 p.(Q16Efs*24) n. 1 p.(R197H) n. 1 p.(M1L) n. 2 p.(V96L) n. 1 p.(E374D) n. 6 p.(D36N) n. 1 p.(T85Kfs*13) 

“ n. 12 p.(D36N) n. 4 p.(N318S) n. 1 p.(V96L) n. 1 p.(T44Nfs*3) - n. 1 p.(V96L) n. 1 p.(R270C) 

“ n. 1 p.(D52H) - n. 1 p.(I221T) n. 1 p.(R116W) - n. 2 p.(R197H) n. 1 p.(S474*) 

“ n. 1 p.(W113R) - n. 1 p.(K129Sfs*17) n. 1 p.(Y121S) - n. 1 p.(V206A) - 

“ n. 2 p.(G215E) - n. 1 p.(N147Tfs*24) n. 1 p.(G215E) - n. 1 p.(G215E) - 

“ n. 1 p.(I221T) - n. 1 p.(G215E) n. 1 p.(I223F) - n. 1 p.(L301Sfs*3) - 
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“ n. 1 p.(P234L) - n. 1 p.(S304N) n. 1 p.(Y233D) - n. 10 p.(N318S) - 

“ n. 4 p.(N318S) - n. 1 p.(M328I) n.1 p.(C305Y) - n. 1 p.(H348Qfs*43) - 

“ n. 7 p.(S474*) - n. 1 p.(T379I) - - n. 2 p.(T379I) - 

“ - - - - - n. 2 p.(A427T) - 

 

Analysis of splice site mutations of LPL gene. 

c.250 -1G>C (Intron 2) 

Construction of the reporter minigene: a 3767 nt fragment of wild type LPL gene, containing exon 2, intron 2 and exon 3 was inserted in pTargeT 

plasmid vector. The splice site mutation was introduced by site directed mutagenesis. The wild type and mutant plasmid were transfected in COS1 

cells.  The wild type minigene generated a transcript of 340 nt, while the mutant minigene generated two transcripts of 411 nt and 332 nt, respectively. 

In the 332 nt transcript exon 2 joined to exon 3 devoid of the first 7 nt at the 5’ end. In the 441 fragment exon 2 was followed by 72 nucleotides 3’ of 

intron 2 (partial intron retention) and by exon 3. The resulting frameshifts led to the insertion of a premutare termination codon. The predicted 

translation products of the mutant transcript are two truncated proteins p.[(T85Yfs*15, V84Efs*86] expected to be devoid of function. 

 

c.1019 -2A>T (Intron 6)  

Construction of the reporter minigene: a 1311 nt fragment of wild type LPL gene spanning from intron 6 to intron 8 was obtained by PCR 

amplification. To reduce the size of the minigene, intron 6 and intron 7 had been shortened by producing an internal deletion of 3.5 kb and 7.5 kb, 

respectively. The genomic DNA fragment  was inserted in a pTargeT vector and the splice site mutation was introduced by site directed mutagenesis. 
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The wild type and mutant plasmid were transfected in COS1 cells. The wild type minigene generated a 508 nt transcript while the mutant minigene 

generated a 347 nt transcript. The sequence of the 347 transcripts showed  that exon 6 joined directly to exon 8 with the complete skipping of exon 7.  

This leads to a frameshift with the formation of a premature termination codon. The product of this transcript is predicted to be a truncated protein 

p.(V340Gfs*13) devoid of function. 

 

Table S.10. LPL mutations described in literature 

Promoter 

Location Effect  

From putative transcription site (at –188bp from ATG)* cDNA (from ATG)  Ref. 

- 95 G>T - 283 G>T No effect on promoter activity 4 

- 93 T>G -281 T>G Decreases promoter activity by 40-50% 4, 35, 39 

- 79 T>G - 267 T>G No effect on promoter activity 4 

-53 G>C -241 G>C Decreases promoter activity by 70-75% 4, 39 

-39 T>C -227 T>C Decreases promoter activity by 85% 4, 39 

+18 ins CC (TCCCCCinsCCTC) -170 ins CC Decreases promoter activity by 20-50% 4, 39 

*More recently located at –370bp from ATG; References for reviews are reported in RED 
 

Major rearrangements    
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Exon (kb) cDNA Proprotein Ref. 

Promoter-Ex1 del (54kb)  c.1-?_88+?del p.0 39 

Ex1_10del c.1_3377del p.0 46 

Ex2 del (2.3kb del, 150nt ins) c.89-?_249+? del p.(Q30Rfs*6) or p.0 24, 39 

Ex3-5 del (6kb) c.250-?_775+? del p.0 1, 2, 9, 39 

Ex6 partial  (2kb dup) c.897-?_1018+?dup p.0 1, 2, 9, 39 

Ex8-10 del c.1140- ?_1428+?del p.0 33, 39 

Ex9 del (2.1kb) c.1323-?_1427+?del p.0 1, 2, 9 

References for reviews are reported in RED 
 

Missense mutations 

Exon cDNA Codon Proprotein Ref. 

1 c.1 A>C ATG>CTG p.(M1L) 36, 39 

1 c.3 G>C ATG>ATC p.(M1I) 19, 39 

2 c.106 G>A GAC>AAC p.(D36N) 1, 2, 9, 26, 35, 36, 38, 39, 48 

2 c.113 A>G GAA>GGA p.(E38G) 34, 39 

2 c.143 A>T GAC>GTC p.(D48V) 2 
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2 c.154 G>C GAC>CAC p.(D52H) 22, 34, 39 

2 c.209 A>G AAT>AGT p.(N70S) 2, 9, 16, 39 

2 c.211 C>T CAC>TAC p.(H71Y) 2 

2 c.213 C>G CAC>CAG p.(H71Q) 39 

2 c.214 A>G AGC>GGC p.(S72G) 25, 39 

2 c.242 G>A GGC>GAC p.(G81D) 42 

3 c.286 G>C GTG>CTG p.(V96L) 1, 2, 9, 33, 34, 35, 36, 38, 39 

3 c.292 G>A GCC>ACC p.(A98T) 10, 11, 23, 39, 50 

3 c.306 A>T AGA>AGT p.(R102S) 2, 9, 39 

3 c.337 T>C TGG>CGG p.(W113R) 1, 2, 9, 22, 29, 34, 39 

3 c.337 T>G TGG>GGG p.(W113G) 9, 39, 48 

3 c.346 C>T CGG>TGG p.(R116W) 36, 39 

3 c.362 A>C TAC>TCC p.(Y121S) 36, 39 

3 c.373 G>A GCG>ACG p.(A125T) 9, 39 

3 c.382 A>G ACC>GCC p.(T128A) 9, 39 

3 c.394 G>A GGA>AGA p.(G132R) 9, 16, 39 
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4 c.464 T>C CTC>CCC p.(L155P) 49 

4 c.482 G>A GGA>GAA p.(G161E) 38 

4 c.488 A>G CAT>CGT p.(H163R) 1, 2, 9, 39 

4 c.496 G>A GGC>AGC p.(G166S) 1, 2, 9, 38, 39 

4 c.506 G>A GGA>GAA p.(G169E) 1, 2, 9, 39 

5 c.541 G>A GGC>AGC p.(G181S) 1, 2, 9, 38, 39 

5 c.541 G>C GGC>CGC p.(G181R) 43 

5 c.542 G>T GGC>GTC p.(G181V) 9, 16, 39 

5 c.547 G>A GAT>AAT p.(D183N) 1, 2, 9, 39 

5 c.547 G>C GAT>CAT p.(D183H) 2, 9, 39 

5 c.548 A>G GAT>GGT p.(D183G) 1, 2, 9, 38, 39 

5 c.551 C>G CCA>CGA p.(P184R) 1, 2, 9, 38, 39 

5 c.553 G>A GCT>ACT p.(A185T) 9, 39 

5 c.557 G>A GGA>GAA p.(G186E) 28, 39 

5 c.569 A>G GAG>GGG p.(E190G) 9, 39 

5 c.570 G>T/C GAG> GA(T/C) p.(E190D) 2 
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5 c.590 G>T CGT>CTT p.(R197L) 12, 14, 39 

5 c.590 G>A CGT>CAT p.(R197H) 26, 38, 39 

5 c.596 C>G TCT>TGT p.(S199C) 1, 2, 9, 39 

5 c.602 A>T GAT>GTT p.(D201V) 15, 39 

5 c.607 G>A GCA>ACA p.(A203T) 1, 2, 9, 39 

5 c.617 T>C GTA>GCA p.(V206A) 38 

5 c.621 C>G GAC>GAG p.(D207E) 2, 9, 39 

5 c.622 G>A GTC>ATC p.(V208I) 10, 11, 39 

5 c.628 C>G CAC>GAC p.(H210D) 9, 39 

5 c.630 C>G CAC>CAG p.(H210Q) 2, 9, 39 

5 c.637 A>G ACC>GCC p.(T213A) 34, 39 

5 c.643 G>A GGG>AGG p.(G215R) 2, 9, 39 

5 c.644 G>A GGG>GAG p.(G215E) 
1, 2, 9, 11, 16, 17, 22, 27, 34, 36, 38, 39, 43, 48, 49, 

51 

5 c.656 G>A CGA>CAA p.(R219Q) 39 

5 c.658 A>C AGC>CGC p.(S220R) 9, 21, 39 

5 c.662 T>C ATT>ACT p.(I221T) 1, 2, 9, 16, 21, 22, 34, 36, 37, 39 
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5 c.665 G>A GGA>GAA p.(G222E) 2, 9, 39 

5 c.667 A>T ATC>TTC p.(I223F) 36, 39 

5 c.674 A>G AAA>AGA p.(K225R) 16, 39 

5 c.680 T>C GTT>GCT p.(V227A) 16, 39 

5 c.680 T>G GTT>GGT p.(V227G) 52 

5 c.693 C>G GAC>GAG p.(D231E) 1, 2, 9, 16, 39 

5 c.695 T>G ATT>AGT p.(I232S) 1, 2, 9, 39 

5 c.697 T>G TAC>GAC p.(Y233D) 36, 39 

5 c.701 C>T CCG>CTG p.(P234L) 1, 2, 9, 22, 34, 39, 41, 48 

5 c.721 C>T CCA>TCA p.(P241S) 32, 51 

5 c.722 C>T CCA>CTA p.(P241L) 6 

5 c.727 T>A TGT>AGT p.(C243S) 1, 2, 9, 39 

5 c.755 T>C ATT>ACT p.(I252T) 1, 2, 9, 35, 36, 38, 39 

5 c.755 T>A ATT>AAT p.(I252N) 30 

6 c.798 C>G TGC>TGG p.(C266W) 9, 39 

6 c.805 G>A GAG>AAG p.(E269K) 9, 11, 19, 39 
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6 c.808 C>T CGC>TGC p.(R270C) 1, 2, 9, 16, 34, 38, 39, 48 

6 c.809 G>A CGC>CAC p.(R270H) 1, 2, 9, 16, 34, 38, 39, 44, 47 

6 c.809 G>T CGC>CTC p.(R270L) 2, 39 

6 c.811 T>A TCC>ACC p.(S271T) 1, 2, 9, 39 

7 c.818 A>G CAT>CGT p.(H273R) 48 

6 c.826 A>G ATC>GTC p.(I276V) 34, 39 

6 c.827 T>C ATC>ACC p.(I276T) 9, 39 

6 c.829 G>A GAC>AAC p.(D277N) 1, 2, 9, 38, 39, 48 

6 c.833 C>G TCT>TGT p.(S278C) 1, 2, 9, 38, 39 

6 c.833 C>T TCT>TTT p.(S278F) 39 

6 c.835 C>G CTG>GTG p.(L279V) 9, 10, 20, 21, 39, 50 

6 c.836 T>G CTG>CGG p.(L279R) 2, 9, 10, 21, 39 

6 c.856 A>G AGT>GGT p.(S286G) 9, 39 

6 c.858 T>A AGT>AGA p.(S286R) 2, 9, 39 

6 c.862 G>A GCC>ACC p.(A288T) 1, 2, 9, 16, 39 

6 c.865 T>C TAC>CAC p.(Y289H) 1, 2, 9, 39 
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6 c.872 G>A TGC>TAC p.(C291Y) 7, 39 

6 c.877 T>C TCC>CCC p.(S293P) 2, 36, 39 

6 c.891 T>G TTT>TTG p.(F297L) 9, 16, 39 

6 c.905 G>T TGC>TTC p.(C302F) 34, 39 

6 c.909 G>C TTG>TTC p.(L303F) 13, 16, 39 

6 c.911 G>A AGT>AAT p.(S304N) 36, 39 

6 c.913 T>C TGT>CGT p.(C305R) 16, 25, 39 

6 c.914 G>A TGT>TAT p.(C305Y) 36, 39 

6 c.928 T>A TGC>AGC p.(C310S) 39 

6 c.929 G>A TGC>TAC p.(C310Y) 10, 11, 39 

6 c.938 T>C CTG>CCG p.(L313P) 2, 9, 23, 39 

6 c.953 A>G AAT>AGT p.(N318S) 1, 2, 9, 23, 26, 34, 35, 36, 38, 39, 45, 48 

6 c.975 C>G AGC>AGG p.(S325R) 10, 11, 39 

6 c.983 T>C ATG>ACG p.(M328T) 9, 39 

6 c.983 T>G ATG>AGG p.(M328R) 17, 39 

6  c.984 G>T ATG>ATT p.(M328I) 36, 39 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
26

6 c.989 T>C CTG>CCG p.(L330P) 9, 39 

3 c.998 G>A CGT>CAT p.(R333H) 48 

6 c.1018 G>A GTC>ATC p.(V340I) 26, 39 

7  c.1033 G>A GTA>ATA p.(V345I) 34, 39 

7 c.1049 C>G TCT>TGT p.(S350C) 9, 39 

7 c.1051 G>A GGG>AGG p.(G351R)  51 

7 c.1081 G>A GCC>ACC p.(A361T) 2, 9, 16, 39 

7 c.1094 C>T TCT>TTT p.(S365F) 10, 11, 39 

7 c.1108 G>A GTG>ATG p.(V370M) 39 

7 c.1122 C>G GAG>GAC p.(E374D) 36, 39 

7 c.1134 C>G TTC>TTG p.(F378L) 5, 39 

7 c.1135 A>G ACT>GCT p.(T379A) 39 

7 c.1136 C>T ACT>ATT p.(T379I) 2, 36, 38, 39 

8 c.1174 C>G CTA>GTA p.(L392V) 2, 9, 39 

8 c.1279 G>A GCC>ACC p.(A427T) 38, 39 

8 c.1302 A>T AAA>AAT p.(K434N) 53 
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8 c.1306 G>A GGA>AGA p.(G436R) 53 

8 c.1309 G>A GAG>AAG p.(E437K) 9, 39 

8 c.1310 A>T GAG>GTG p.(E437V) 2, 9, 39, 40 

9 c.1334 G>A TGT>TAT p.(C445Y) 9, 37, 39, 40 

9 c.1342 G>A GAG>AAG p.(E448K) 9, 37, 39, 40 

References for reviews are reported in RED 
 

Nonsense mutations 

Exon cDNA Codon Proprotein Ref. 

1 c.41 G>A TGG>TAG p.(W14*) 9, 39 

1 c.42 G>A TGG>TGA p.(W14*) 3, 16 

2 c.162 C>A TGC>TGA p.(C54*) 20, 39 

3 c.264 T>A TAT>TAA p.(Y88*) 1, 2, 9, 16, 39 

3 c.272 G>A TGG>TAG p.(W91*) 1, 2, 9, 39 

3 c.300 C>A TAC>TAA p.(Y100*) 2, 9, 39 

3 c.397 C>T CAG>TAG p.(Q133*) 1, 2, 9, 39 

5 c.655 C>T CGA>TGA p.(R219*) 5, 39 
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6 c.798 C>A TGC>TGA p.(C266*) 2, 9, 16, 39 

6 c.867 C>A TAC>TAA p.(Y289*) 1, 2, 9, 36, 39 

6 c.867 C>G TAC>TAG p.(Y289*) 1, 9 

6 c.873 C>A TGC>TGA p.(C291*) 9, 39 

6 c.945 T>A/G TAT>TAA/G p.(Y315*) 9, 39 

6 c.987 C>A TAC>TAA p.(Y329*) 8, 9, 39 

8 c.1226 G>A TGG>TAG p.(W409*) 2, 16, 39 

8 c.1227 G>A TGG>TGA p.(W409*) 2, 9 

8 c.1262 G>A TGG>TAG p.(W421*) 27, 39, 48 

9 c.1421 C>G TCA>TGA p.(S474*) 1, 2, 9, 11, 16, 30, 35, 36,  38, 39, 48 

References for reviews are reported in RED 
 

Insertions/deletions of a single or few nucleotides 

Exon cDNA Proprotein Ref. 

1 c.46_47delCA p.(Q16Efs*24) 22, 34, 39, 48 

2 c.128dupT p.(R44Kfs*4) 45 

2 c.133dupA p.(T44Nfs*3) 36 
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2 c.133_143delACCCCTGAAGA p.(D48Hfs*3) 9, 39 

2 c.183dupA p.(E62Rfs*28) 9, 39 

2/IVS2 c.247_249+1delACGg p.(T83*) 28 

3 c.286_287delGT p.(V96Gfs*51) 9, 39 

3 c.290_293delCCGCinsGG p.(A97Gfs*50) 9, 39 

3 c.373_374insG p.(A125Gfs*23) 48 

3 c.384delCinsTGGGCT p.(K129Gfs*45) 1, 2, 9, 39 

3 c.386_390delAACTG p.(K129Sfs*17) 35, 36 

4 c.440_443delACTA p.(N147Tfs*24) 2, 9, 36, 39 

5 c.596delC p.(S199Ffs*8) 18, 39 

5 c.708delA p.(G237Vfs*15) 2 

5 c.742delG p.(A248Lfs*4) 1, 2, 9, 16, 39 

5 c.767_768insTAAATATT p.(L257Kfs*10) 1 

6 c.835_836delCT p.(L279Vfs*3) 9, 39 

6 c.840delG p.(N281Mfs*23) 46 46

6 c.901delC p.(L301Sfs*3) 38 
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6 c.953delA p.(N318Ifs*13) 9, 16, 39 

6 c.1016_1017insC p.(K339Nfs*15) 23, 39 

7 c.1044_1050delTTTTTCT p.(H348Qfs*43) 38 

7 c.1138_1139delCT p.(L380Afs*2) 21, 38, 39 

8 c.1163-1164insA p.(Y389Lfs*24) 23, 39 

8 c.1227delG p.(W409*) 1, 16 

8 c.1267_1272delAGTCCC p.(S423_P424del) 9, 39 

10 c.1840_1844(*172_176)delTACTC - 31 

References for reviews are reported in RED 
 

Splicing mutations 

cDNA Effect Ref. 

IVS1 c.88 +1G>C Loss of DS; new DS in IVS1; p.(Q30Pfs*45) or p.0 2, 9, 39 

IVS1 c.88 +2dupT Weakening of DS; new DS in IVS1; p.(Q30Pfs*45) or p.0 32, 51 

IVS1 c.89 –1G>C Loss of AS, new AS in Ex2 or skipping of Ex2 ; p.(Q30Pfs*6) or p.0 51 

IVS1 c.89 –2_4delCCA r.88_249del, p.(Q30Rfs*6) 9, 39 

IVS2 c.249 +1G>A Loss of DS; new DS in IVS2; c.249_250ins38, p.(T85Kfs*13) 1, 2, 9, 16, 39, 51                                            
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IVS2 c.249 +2_3insT Loss of DS; new DS in IVS2; c.249_250ins38, p.(T85Kfs*13) 48 

IVS2 c.250 –1G>A Loss of AS, new AS in IVS2; c.249_250ins72, p.(T83fs*16) 1, 2, 9, 39 

IVS3 c.430 –6C>T Weakening of AS; new AS in Ex4; c.430_505del, p.(E143fs*3) 2, 3, 9, 39 

IVS6 c.1019 –3C>T Skipping Ex7; c.1019_1139del, p.(V340Gfs*13)  9 

IVS6 c.1019 –3C>A 
Skipping Ex7; r.1019_1139del, p.(V340Gfs*13)  

Skipping Ex6_9; r.776_1427del, p.(D259Efs*13)  
9, 39 

IVS8 c.1322 +2T>C Loss of DS, new DS in Ex 8; r.1188_1322del, p.(K441Gfs*6) 9, 16, 39 

References for reviews are reported in RED  
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