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Abstract      1 

The objective of the present study was to identify the ACE-inhibitory peptides released from 2 

thermally treated Phaseolus vulgaris (pinto) whole beans after in vitro gastro-intestinal digestion. 3 

The degree of hydrolysis increased during digestion reaching a value of 50% at the end of the 4 

pancreatic digestion. The < 3 kDa fraction of the post-pancreatic sample showed high ACE-5 

inhibitory activity (IC50 = 105.6 ± 2.1 µg of peptides/mL). Peptides responsible for the ACE-6 

inhibitory activity were isolated by reverse phase HPLC. Three fractions, showing the highest 7 

inhibitory activity were selected for MS/MS experiments. Eleven of the identified sequences have 8 

previously been described as ACE-inhibitors. Most of the identified bioactive peptides had a 9 

hydrophobic amino acid, (iso)leucine or phenylalanine, or proline at the C-terminal position, which 10 

is crucial for their ACE-inhibitory activity. The sequence of some peptides allowed us to anticipate 11 

the presence of ACE-inhibitory activity.  12 

 13 

Keywords: common bean; proteolysis; hypertension; mass spectrometry; peptides   14 
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Introduction 15 

 16 

High blood pressure or hypertension is a major independent risk factor for cardiovascular and 17 

related diseases. Inhibition of the angiotensin I-converting enzyme (ACE) is a key point in the 18 

treatment of hypertension. ACE is a dipeptidyl carboxypeptidase that catalyses, in vivo, the 19 

conversion of the plasmatic peptide angiotensin I into the potent vasoconstrictor angiotensin II. 20 

Moreover, ACE can also degrade the antihypertensive vasodilator bradykinin. Inhibition of ACE 21 

plays an important role in regulation of blood pressure and drugs that inhibit ACE are commonly 22 

prescribed for the treatment of hypertension or related cardiovascular diseases (Acharya et al., 23 

2003).  24 

Bioactive peptides derived from parent proteins, either from animal or plant sources, are thought to 25 

be beneficial in the management of hypertension, because of their ability to inhibit the activity of 26 

the enzyme ACE (Phelan, & Kerins, 2011; García et al., 2013). 27 

Many ACE-inhibitory peptides have been isolated from milk or its derivatives through processes of 28 

enzymatic hydrolysis, fermentation and in vitro gastrointestinal digestion (Phelan, & Kerins, 2011).  29 

In addition to milk proteins, biologically active and ACE-inhibitory peptides can be released from 30 

plant derived food proteins following enzymatic hydrolysis. Cereals and legumes are the main 31 

target of these researches, both being rich sources of proteins with a complementary spectrum of 32 

amino acids (García et al., 2013). ACE-inhibitory peptides have been identified after hydrolysis by 33 

commercial enzymes (such as alcalase) of mungbean, chickpea, rice, soybean and corn gluten meal 34 

(Garcia et al., 2013). Another process commonly used to generate ACE-inhibitory peptides is the in 35 

vitro sequential gastro-intestinal digestion. Regarding vegetables, this approach has been used to 36 

release ACE-inhibitory peptides from spinach, buckwheat and sunflower (Garcia et al., 2013). 37 

Common bean (Phaseolus vulgaris) is, together with soybean and peanuts, one of  the most 38 

important food legumes in the world. It contain high levels of protein (20-30% on a dry basis), 39 
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fiber, as well as valuable minerals and vitamins. The most important proteins found in common 40 

bean are the storage protein phaseolin (40– 50% of the total) and lectins (10–27% of the total).  41 

Various epidemiological and clinical studies, suggested an association between the consumption of 42 

common bean and legumes and the incidence of chronic diseases (Luna-Vital et al., 2014 and 43 

references herein). For instance, the NHANES I epidemiologic follow-up study  indicated that the 44 

consumption of more than 4 serving of legumes (beans and peas) per week was correlated to a 45 

reduction in the cardiovascular and coronary heart disease as well as in the development of 46 

hypertension in US men and women (Bazzano et al., 2001). 47 

Recently, some studies demonstrated that hydrolysis of proteins isolated from several varieties of 48 

Phaseolus vulgaris lead to the release of ACE-inhibitory compounds (Torruco-Uco et al., 2009; Rui 49 

et al., 2012a; Rui et al., 2012b; Boschin et al., 2014; Mojica et al., 2015). These studies suggested 50 

that ACE-inhibition by bean-derived peptides may be a mechanism of action explaining the 51 

epidemiological evidences related to a lower incidence of hypertension and cardiovascular disease 52 

in humans. However, in only one study the peptides responsible for the ACE-inhibitory activity was 53 

identified (Rui et al., 2013). 54 

To expand this knowledge, the current study was undertaken to identify the peptides responsible for 55 

the ACE-inhibitory activity released from common bean after gastro-intestinal hydrolysis. 56 

We used an in vitro digestion procedure mimicking the chemical and physical condition of the 57 

gastro-intestinal tract to process thermal-treated pinto bean (Phaseolus vulgaris). The digested 58 

fraction was characterized for the ACE-inhibitory activity and then further separated with HPLC. 59 

Finally, the different fractions containing low molecular weight peptides were characterized for 60 

their ACE-inhibitory activity. The fractions with the highest activity were then analyzed with 61 

nanoLC-QTOF-MS with the aim to identify the bioactive peptides.62 
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Methods 63 

 64 

Materials 65 

Bile salts (mixture of sodium cholate and sodium deoxycholate), porcine α-amylase, pepsin from 66 

porcine gastric mucosa, pancreatin from porcine pancreas (4xUSP), angiotensin converting enzyme 67 

from rabbit lung, mucin II and III, bovine serum albumin, lysozyme and urea were supplied by 68 

Sigma (Milan, Italy). Amicon Ultra-4 regenerated cellulose 3 kDa were supplied by Millipore 69 

(Milan, Italy). Phaseolus vulgaris beans (pinto beans) were purchased from a local market (Reggio 70 

Emilia). All electrophoretic, HPLC and MS/MS reagents were from Biorad (Hercules CA, U.S.A.). 71 

All the other reagents were from Carlo Erba (Milan, Italy). The absorbance was read using a Jasco 72 

V-550 UV/Vis spectrophotometer (Orlando FL, U.S.A.).  73 

 74 

Sample preparation 75 

Pinto beans were prepared by cooking 200 g of beans in 1000 mL of boiling water for 2h. Cooked 76 

pinto beans were brought to room temperature and then subjected to the in vitro digestion protocol. 77 

 78 

In vitro gastro-intestinal digestion 79 

For the in vitro digestion, the protocol, developed within the COST Action FA1005 and further 80 

validated for milk and solid food (Kopf-Bolanz et al., 2012; Stuknite et al., 2014), was followed. 81 

Simulated salivary (SSF), simulated gastric (SGF), and simulated intestinal (SIF) fluids were 82 

prepared according to Kopf-Bolanz et al. (2012). Intestinal fluid was prepared by mixing pancreatic 83 

(PF) and bile (BF) fluids.  84 

Phaseolus vulgaris beans (15.75 g) were homogenized in a stomacher laboratory blender for 1 min 85 

to simulate mastication in the presence of 21 mL of SSF and further incubated for 5 min (oral 86 

phase). Porcine α-amylase was added to SSF (150 U/mL of SSF) immediately before the 87 

incubation. Afterwards, 42 mL of SGF was added, the pH was adjusted to 2.0 with HCl and 88 
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supplemented with porcine pepsin (315 U/mL of SGF). The samples was further incubated for 120 89 

min (gastric phase). The intestinal digestion was carried out by adding to the gastric digested beans 90 

63 mL of SIF (42 mL of PF and 21 mL of BF), adjusting the pH to 7.0 and incubating the sample 91 

for 120 min (pancreatic phase). Pancreatin was added to the PF immediately before the incubation.  92 

All incubations were performed at 37°C on a rotating wheel (10 rpm).  93 

Control digestions were carried out by replacing pinto beans with the same amount of water.  94 

Aliquots of the digested samples were collected at the end of each phase, cooled in ice and 95 

immediately frozen at –80 °C for further analysis.  96 

The digestions were performed in triplicate. 97 

 98 

Determination of the degree of hydrolysis (DH)  99 

The determination of protein hydrolysis in the digested samples was carried out by measuring the 100 

peptide concentration using the TNBS method with leucine as standard (Adler-Nissen, 1979). 101 

The hydrolysis degree was calculated as reported in equation (1):  102 

DH= (h/htot) ·100     (1) 103 

where h is the hydrolysis equivalent, defined as the concentration in milliequivalents/g of protein of 104 

α-amino groups formed at the different stages of the simulated digestion, and htot is the hydrolysis 105 

equivalent at complete hydrolysis to amino acids. The total number of amino groups was 106 

determined by hydrolyzing the total protein extract in 6 mol/L HCl at 110°C for 24 h. The htot value 107 

was calculated resulting in 7.43 milliequivalents/g of protein. 108 

The total protein extract from pinto beans whole seeds was prepared according to Carrasco-Castilla 109 

et al. (2012). 110 

 111 

SDS-PAGE electrophoresis 112 

Samples taken at different times of digestion were subjected to SDS-PAGE electrophoresis using 113 

13% polyacrylamide separating gel according to Carrasco-Castilla et al. (2012). Samples were 114 
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diluted to similar end dilutions in Laemmli buffer (0.05 mol/L Tris, pH 6.8, containing 2% SDS, 0.1 115 

mol/L DTT, and 0.025% Bromophenol Blue). Vials were heated in boiling water for 4min, and 10 116 

µL of each sample (corresponding to 20 µg of undigested pinto bean proteins) was applied to the 117 

gel. As a molecular ladder, the Blue-StepTM Broad range marker (14–200 kDa) was used. Gels were 118 

stained with Coomassie Blue.  119 

 120 

Measurements of ACE-inhibitory activity  121 

Samples (4 mL) collected at the end of the pancreatic step of the in vitro digestion were subjected to 122 

ultrafiltration with Amicon Ultra-4 nominal cut-off 3kDa, at 7500g for 120 min at 4°C. The filtrates 123 

containing low molecular weight peptides was further analyzed for their ability to inhibit ACE 124 

activity. Peptides were quantified in the sample by using the TNBS method as described in 125 

paragraph 2.4. Results are expressed as mg of leucine equivalent/g of pinto bean. 126 

ACE-inhibitory activity was measured by the spectrophotometric assay of Ronca-Testoni (1983) 127 

using the tripeptide, 2-furanacryloyl-phenylalanylglycylglycine (FAPGG) as substrate. 128 

For the control assay, 350 µL of FAPGG 1.6 mM dissolved in the reaction buffer (Tris-Cl 100 129 

mmol/L pH 8.2 and containing 0.6 mol/L of NaCl) was mixed directly in cuvette with 330 µL of 130 

reaction buffer. The solution was kept at 37°C for 5 min before the addition of 20 µL of ACE 131 

solution (so that the final activity of the enzyme in the assay was 50 mU/mL). 132 

For the inhibition assay, variable amount of sample were added in place of the buffer. 133 

The reaction was followed at 345 nm for 10 min. 134 

Results are expressed as IC50 that is defined as the concentration of peptides required to inhibit 50% 135 

of the enzymatic activity. 136 

 137 

HPLC analysis of peptides 138 

HPLC separation of the low molecular weight fractions of digested pinto beans was performed with 139 

a Jasco HPLC system equipped with a reversed phase column Hamilton HxSil C18 (Hamilton, 140 
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Reno, Nevada; 250mm x 4.6mm) as described in Hernández-Ledesma et al. (2007). The two 141 

solvents were: solvent A mixture of water-trifluoroacetic acid (0.037%) and solvent B acetonitrile-142 

trifluoroacetic acid (0.027%). A linear gradient of solvent B in A ranging from 0% to 45% in 115 143 

min with a flow rate of 0.5 mL/min was used to separate the peptides contained in the low 144 

molecular fractions of digested milk. The PDA detector was set at 214 nm. Five major fractions 145 

were collected and freeze-dried. These fractions were characterized for their ACE-inhibitory 146 

activity (paragraph 2.6) and for the peptide concentration (paragraph 2.4). 147 

  148 

Nanoflow LC-ESI-QTOF-MS/MS analysis 149 

The fractions with the highest ACE-inhibitory activity were subjected to QTOF MS/MS analysis for 150 

peptides identification. Nano LC/MS and tandem MS experiments were performed on a 1200 Series 151 

Liquid Chromatographic two-dimensional system coupled with a 6520 Accurate-Mass Q-TOF 152 

LC/MS via a Chip Cube Interface (Agilent Technologies). Chromatographic separation was 153 

performed on a ProtID-Chip-43(II) including a 4 mm 40 nL enrichment column and a 43 mm × 75 154 

μm analytical column, both packed with a Zorbax 300SB 5 μm C18 phase (Agilent Technologies). 155 

The mobile phase consisted of (A) H2O/acetonitrile/formic acid (96.9:3:0.1, v/v/v) and (B) 156 

acetonitrile/H2O/formic acid (94.9:5:0.1, v/v/v). The sample (4 μL) was loaded on the Chip 157 

enrichment column at a flow rate of 4 μL/min with a mobile phase consisting of 100% A using a 158 

G1376A capillary pump. A flush volume of 2 μL and a flush-out factor of 2 were used. After valve 159 

switching a gradient elution was performed with the enrichment and analytical column at 500 160 

nL/min using a G2226A nano pump. The gradient started at 3% B for 0.5 min then linearly ramped 161 

up to 28% B in 16.5 min. The mobile phase composition was raised up to 40% B in 3 min, then 162 

95% B in 1 min and maintained for 4 min in order to wash both enrichment and analytical columns. 163 

The mass spectrometer was tuned, calibrated and set with the same parameters as reported by Dei 164 

Più et al. (2014). For identification, MS/MS spectra were converted to .mgf and de novo peptide 165 

sequencing was performed using Pepnovo software. The following parameters were considered: 166 
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enzyme, none; peptide mass tolerance, ± 40 ppm; fragment mass tolerance, ± 0.12 Da; variable 167 

modification, oxidation (M) and phosphorylation (ST); maximal number of PTMs permitted in a 168 

single peptide 3. 169 

A search for the biological activity of peptides identified was carried out through the BIOPEP 170 

database (http://www.uwm.edu.pl/biochemia/biopep/start_biopep.php). Confirmation of peptides 171 

sequence in common bean proteins was performed using Peptide Match 172 

(http://research.bioinformatics.udel.edu/peptidematch/index.jsp). 173 

 174 

Statistical analysis  175 

All data are presented as mean ± SD for three replicates for each prepared sample. Univariate 176 

analysis of variance (ANOVA) with Tukey post-hoc test was applied using Graph Pad Prism 6.0 177 

(GraphPad Software, San Diego, CA). The differences were considered significant with P <0.05. 178 
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Results  179 

 180 

Assessment of protein hydrolysis during simulated digestion  181 

Cooked pinto beans (Phaseolus vulgaris) were submitted to a consecutive three-step in vitro gastro-182 

intestinal digestion protocol. Protein hydrolysis during the digestion was followed both by 183 

measuring the amount of released free amino group (degree of hydrolysis) and by SDS 184 

electrophoresis. 185 

The degree of hydrolysis increased after peptic digestion although not significantly (Figure 1). The 186 

pancreatic digestion produced a high and significant increase (P<0.001) in protein hydrolysis 187 

reaching a degree of hydrolysis value of 50%. 188 

SDS–PAGE analysis of the total bean protein preparation and of the different steps of digestion is 189 

shown in Figure 2. Several bands were present in the total bean protein preparation (Figure 2; lane 190 

2). The most abundant bands were the phaseolins subunits α and β with a molecular weight (MW) 191 

of 47 and 44 kDa (Montoya et al., 2008). Bands between 16 and 32 kDa corresponded to proteins 192 

belonging to the family of lectins. Other bands were visible such as that at 10 kDa which 193 

corresponded to protease inhibitor, and bands at 15.2 and 33.8 kDa corresponding to α-amylase 194 

inhibitor and its β-subunits (Carrasco-Castilla et al., 2012). After the oral phase of the digestion 195 

(Figure 2; lane 3) only the band corresponding to the subunit β of phaseolin was visible, together 196 

with some bands at lower MW which corresponded to lectin family proteins. Gastric digestion 197 

resulted in the disappearance of all the visible bands suggesting that the major proteins extracted 198 

during the oral phase were degraded during this phase (Figure 2; lane 4). Similarly after pancreatic 199 

digestion (Figure 2; lane 6) no bands corresponding to the bean proteins were found. The bands in 200 

lane 6 corresponded to the digestive pancreatic enzymes since they showed the same electrophoretic 201 

profile as the control digestion carried out without beans (Figure 2; lane 7). 202 

 203 

ACE-inhibitory activity  204 
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The ACE-inhibitory activity of the < 3 kDa permeates was calculated as IC50. While the < 3 kDa 205 

fraction of undigested sample showed no effect, the ACE-inhibitory activity at the end of the 206 

gastro-intestinal was determined to be 105.6 ± 2.1 µg of peptides/mL.  207 

The permeate < 3 kDa fraction was loaded on the HPLC C18 column and peptides detected at 214 208 

nm with a photodiode array detector. The chromatogram presented in Figure 3 showed most 209 

peptides eluting between 6 and 25 min. As shown in Figure 3, five fractions (F1–F5) were 210 

collected. All fractions exerted some ACE-inhibitory activity. Table 1 shows the ACE-inhibitory 211 

activity, expressed as IC50 values, of the peptide fractions isolated by RP-HPLC. IC50 values ranged 212 

from 5.4 to 18.1 µg/mL. In fractions F1, F3 and F4 a higher ACE inhibitory activity was observed. 213 

The lowest IC50 values of 5.4 ± 0.2 and 5.5 ± 0.1 µg peptides/mL were found in fractions F4 and 214 

F3, respectively, which were about twenty times lower than the IC50 value of the post-pancreatic < 215 

3 kDa permeate.  216 

The yield of the five collected fractions was estimated (Table 1). For fractions F2, F3, F4 and F5 217 

the yield was similar, ranging from 12.4 and 14.8%. Fraction F2 showed the highest yield of 218 

approximately 22% (Table 1). The sum of the peptide concentration in the five fractions resulted in 219 

3.42 mg/mL, giving a total yield of 75.5%.  220 

 221 

NanoLC-ESI-QTOF-MS/MS identification of peptides in the HPLC collected fractions 222 

 223 

Fractions  with the highest ACE-inhibitory activity were then analyzed with nanoflow LC-ESI-224 

QTOF mass spectrometry to identify the peptides present in these fractions. 225 

Each peak was selected for peptide identification by MS/MS ion scan using de novo sequencing 226 

software. Results from peptide identification were subjected to a manual evaluation, and the 227 

validated peptide sequences explained most of the major peaks in the MS spectra. The list of 228 

compounds identified in these fractions is shown in Tables 2-4. In addition, the list of peptides 229 

identified in the fraction F2 and F5 is shown as online supplementary material (Tables S1 and S2). 230 
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Fraction F1 (Table 2) contained 10 peptides, most of them being dipeptides (7 peptides; 70% of the 231 

identified peptides in F1). The longest peptide identified in this fraction (EEEES) had five amino 232 

acid residues and derived from the α and β subunits of phaseolin. Fraction F2 (Table S1) showed a 233 

45% of dipeptides (4 out of 9) with the longest peptides having five amino acid residues. In fraction 234 

F3 (Table 3), 13 peptides, having 2-5 amino acid residues, were identified. Five peptides (~ 38% of 235 

the identified peptides in F3) were dipeptides. The range of peptide length in F4 (Table 4) was 236 

between 2 and 7 amino acid residues. Eight peptides from 24 are dipeptides (~ 33% of the identified 237 

peptides in F4) as well as eight peptides contained three amino acid residues. The longest peptide 238 

found in this fraction was the eptapeptide SGSGDEV derived from the α and β subunits of 239 

phaseolin. Fraction F5 (Table S2) contained the lowest percentage of dipeptides (18%).   240 

In general, the length of peptides increased with increasing acetonitrile concentration. The average 241 

number of amino acid residues per peptide (sum of total amino acid residues in the fraction/number 242 

of peptide in the fraction) in the five fractions increased from 2.5 in F1 to 2.8 in F2, 3.1 in F3, 3.4 in 243 

F4 and 4.3 in F5. 244 

As can be seen in Tables 2-4, each fraction contained at least two peptides with previously reported 245 

ACE-inhibitory activity. 246 

Finally, some free amino acids (not reported in the tables) were found in three of the characterized 247 

fractions. In F1 we identified methionine (M), glutamine (Q) and valine (V) whereas in F3 the 248 

identified amino acids were threonine (T) and tyrosine (Y) and in F4 leucine/isoleucine (Lx). 249 
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Discussion 250 

 251 

To our knowledge, the present study is the first demonstration that ACE-inhibitory peptides can be 252 

released during the gastro-intestinal digestion of whole pinto beans. 253 

Previous researches (Mojica et al., 2015; Rui et al. 2012a and 2012b; Boschin et al., 2014) showed 254 

the potential of bean proteins to release ACE-inhibitory peptides during hydrolysis catalyzed by 255 

bacterial or gastro-intestinal enzymes. However, these works focused on the bioactive properties of 256 

peptides released from protein isolates from beans and not from whole beans.  257 

The proteolysis process during in vitro gastrointestinal digestion can be strongly influenced by food 258 

matrix, e.g. by reducing the proteolysis rate of proteins (Mandalari et al., 2011). However, in most 259 

studies performed so far, pure proteins, extracted from whole bean, have been subjected to 260 

enzymatic digestion assays excluding a potential impact of a food matrix. Common bean is a 261 

complex matrix containing not only proteins but also polysaccharides and polyphenols which can 262 

have a strong impact on gastrointestinal degradation of protein. For example, polysaccharides were 263 

shown to hamper pepsin activity (Polovic et al., 2007) whereas phenolic compounds may have a 264 

positive or a negative effect on protein digestion depending on the protease and on the nature of the 265 

phenolic compound (Tagliazucchi et al., 2005). Thus, to give a picture more closely to the in vivo 266 

physiological condition of the bioactive peptides released during in vitro digestion, food matrix 267 

should be considered. 268 

The degree of hydrolysis, which represents the extent of the digestion, increased reaching a value of 269 

50% at the end of the pancreatic digestion. This value is comparable to that obtained by Mojica et 270 

al. (2015) after simulated digestion of precooked pinto beans protein extract.   271 

Previous researchers have reported a lower degree of hydrolysis after digestion of bean protein 272 

extracts. Rui et al. (2012a), obtained a degree of hydrolysis of 16% after simulated digestion of 273 

pinto bean protein extracts non-thermally treated. They digested nine varieties of beans achieving a 274 

degree of hydrolysis between 7 and 16%. Pepsin-pancreatin digestion of hard-to-cook bean 275 
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extracted proteins resulted in a degree of hydrolysis of 28% (Betancour-Ancona et al., 2014). In 276 

general, bean protein digestibility in a simulated digestive system seems to be related to the thermal 277 

treatment. Cooking of beans resulted in a higher degree of hydrolysis respect to non-cooked beans.  278 

Bean proteins, especially phaseolin, are considered highly resistant to enzymatic hydrolysis 279 

(Jivotovskaya et al., 1996). However, thermal processing may result in a loss of the tri-dimensional 280 

structure of the proteins, causing unfolding of the molecules. Thermally denatured bean proteins are 281 

more susceptible to enzymatic hydrolysis (Montoya et al., 2008; Rui et al., 2012b). Protein 282 

unfolding results in an increased exposure of the cleavage sites, facilitating the access to these sites 283 

of digestive enzymes that are able, with greater efficiency, to hydrolyze proteins. 284 

The extent of the hydrolysis also depend on the type of protease used. Despite pepsin-pancreatin 285 

digestion, without thermal processing, results in low (< 30%) degree of hydrolysis (Rui et al., 286 

2012a; Betancour-Ancona et al., 2014), treatment with alcalase, termolysine, flavourzyme or a 287 

combination of these resulted in a high degree of hydrolysis (35-70%) (Torruco-Uco et al., 2009; 288 

Rui et al., 2012b; Valdez-Ortiz et al., 2012). 289 

Protein digestibility and the extent of hydrolysis affected the in vitro ACE-inhibitory activity. 290 

Generally speaking, a higher degree of enzymatic hydrolysis represents a higher ACE-inhibitory 291 

activity.  Digested pinto beans released ACE-inhibitory peptides with a calculated IC50 value in the 292 

post-pancreatic < 3 kDa permeate of  105.59 µg of peptides/mL. This value is about two times 293 

lower than the IC50 found by Mojica et al. (2015) and Rui et al. (2014) after simulated digestion of 294 

pre-cooked pinto beans and a protein extract from pinto beans, respectively. This difference can 295 

arise from the different digestion system used and/or from the ultrafiltration step. The digestion 296 

system used in our study has been validated for liquid and solid foods (Kopf-Bolanz et al., 2012; 297 

Stuknite et al., 2014) and developed within the COST Action FA1005.  298 

This in vitro digestion system closely mimics the digestive process in humans, especially for protein 299 

digestion, resulting in the formation of free amino acids and small peptides (2-6 amino acids) 300 

(Kopf-Bolanz et al., 2012). Data reported in Tables 1-4 and Tables S1 and S2 are in agreement 301 
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with the results of the Kopf-Bolanz study. The five collected fractions explained the 76% of the 302 

total peptides present in the digested bean sample. The identification of the peptides in these 303 

fractions showed that the length of the peptides was between 2 and 7 amino acid residues. We 304 

identified in the five fractions a total of 67 peptides. About 39% of the peptides are dipeptides (26 305 

dipeptides), whereas tripeptides represent the 28% of the total identified peptides. The average size 306 

of the identified peptides was 3.3 residues per peptides. To this purpose, it has been suggested that 307 

short peptides (2-12 amino acid residues) are more effective inhibitors of ACE activity than longer 308 

peptides (Garcia et al., 2013).  309 

Furthermore, ultrafiltration is a technique largely used to enrich the digested food in ACE-310 

inhibitory peptides. For example, Vermeirssen et al. (2005), found higher ACE-inhibitory activity 311 

in the < 3 kDa fraction than in the > 3 kDa fraction and in un-fractionated digested pea and whey 312 

samples.  313 

Among the identified peptides, several had previously been established to display ACE-inhibitory 314 

activity. More specifically, two dipeptides in fraction F3 showed very low IC50 values. The 315 

dipeptides EY and AI, which were previously isolated from shark meat hydrolysate and soy sauce-316 

like seasoning, demonstrated IC50 values of 2.7 and 3.4 µmol/L, respectively (Wu et al., 2008; 317 

Nakahara et al., 2010). The presence of these two small peptides justifies the high ACE-inhibitory 318 

activity found in this HPLC fraction. Fraction F4, instead, contains two tripeptides with high ACE-319 

inhibitory activity. The tripeptide LAP (isolated from hydrolyzed chicken muscle) and its isomeric 320 

form IAP (isolated from wheat gliadin hydrolyzates) are potent inhibitors of ACE activity with IC50 321 

values of 3.5 and 2.7 µmol/L, respectively (Fujita et al., 2000; Motoi & Kodama, 2003). LAP was 322 

found to be effective when intravenously administered to spontaneously hypertensive rats (SHR) 323 

(Fujita et al. 2000). Also the tripeptide LVE, previously isolated from pearl oysters, showed low 324 

IC50 value of 14.2 µmol/L (Qian et al., 2007). Additional dipeptides with higher IC50 values were 325 

found in fraction F3 (GLx) and F4 (PL, GF, SF and AF) as reported in Tables 3 and 4. Fraction F1, 326 
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instead, contained dipeptides (LF, IF and EV) with previously demonstrated ACE-inhibitory 327 

activity which showed IC50 values ranged between 350-930 µmol/L (see Table 2). 328 

According to previous reports on the structure–activity correlations between different peptide 329 

inhibitors of ACE (Wu et al., 2006), some other peptides may have the potential to inhibit ACE 330 

activity. In the case of the dipeptides, for both positions, amino acid residues with large bulk chain 331 

as well as hydrophobic side chains such as aromatic amino acids (phenylalanine, tyrosine and 332 

tryptophan) and branched aliphatic side amino acids (leucine, isoleucine and valine) are preferred 333 

(Wu et al., 2006). Based on these considerations, three dipeptides in fraction F4 (VLx, ELx and DF) 334 

and two dipeptides in fraction F3 (DLx and TLx) could be active against ACE activity. All these 335 

peptides have a hydrophobic amino acid residue, L or F, at the C-terminal position, showing they 336 

display structural characteristics of ACE-inhibitory peptides.  337 

To exert an antihypertensive effect after oral ingestion, ACE-inhibitory peptides have to be 338 

adsorbed at intestinal level and arrive at the cardiovascular system in an active form. Peptides 339 

identified in our study are very short (di- or tri-peptides) and resistant to gastro-intestinal digestion 340 

by pancreatic proteases such as trypsin, chymotrypsin, elastase and carboxypeptidases. All these 341 

proteolytic enzymes are present in our digestive system and are responsible for the production of 342 

these ACE-inhibitory peptides.  343 

Exopeptidases in the brush-border membrane may limit the absorption of small peptides because of 344 

their proteolytic activity. However, recent works suggested that proline-rich peptides may resist the 345 

action of brush-border peptidases and cross, intact, the intestinal barrier in Caco-2 cell system. For 346 

example, the proline-rich β-casein-derived peptides NIPPLTQTPV exhibited a relative stability 347 

towards brush-border membrane peptidases and is translocated intact into Caco-2 cells (Picariello et 348 

al., 2013). In general, Picariello et al. (2013) found that the majority of the peptides resistant to 349 

intestinal hydrolysis and able to cross the Caco-2 cells are proline-rich peptides.  350 

Two peptides found in fraction F4, LxAP and PLx, are proline-containing peptides and therefore 351 

potentially resistant to further digestion by brush-border exopeptidase. Indeed, it is now accepted 352 
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that significant amounts of small peptides can escape total digestion to amino acids and enter the 353 

circulation intact (Vermeirssen et al., 2004). 354 

 355 

Conclusions 356 

In this study, for the first time, we demonstrated that the gastro-intestinal digestion of thermally-357 

treated Phaseolus vulgaris whole bean (pinto bean) released ACE-inhibitory peptides. We 358 

identified, after ultrafiltration and RP-HPLC purification followed by nanoflowLC-ESI-QTOF-359 

MS/MS, eleven peptides with previously established ACE-inhibitory activity. These peptides are di- 360 

or tri-peptides having the potential to survive the action of brush-border peptidases and lower the 361 

blood pressure of hypertensive patients. 362 
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Figure captions  

Fig. 1. Degree of hydrolysis (DH%) of bean proteins after the different steps of in vitro digestion. 

Values represent means ± SD of triplicate digestions. Different letters indicate that the values are 

significantly different (P < 0.05). 

Fig. 2. SDS-PAGE of bean proteins. Molecular weight standard is shown in lane 1. Protein pattern 

of pinto bean is shown in lane 2. Sample after salivary digestion of beans is shown in lane 3. 

Samples after gastric digestion are in lanes 4 (bean digested proteins) and 5 (control digestion with 

digestive enzymes but without beans). Samples after pancreatic digestion are in lanes 6 (bean 

digested protein) and 7 (control digestion with digestive enzymes but without beans). 

Fig 3. UV-chromatograms of the low molecular weight peptidic fraction (<3 KDa) obtained from 

pinto beans subjected to consecutive gastro-pancreatic digestion. F1-F5 represent the collected 

fraction used for the identification of the ACE-inhibitory peptides. 
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Figure 1 
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Figure 2 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 1. Angiotensin-I converting enzyme (ACE)-inhibitory activity (IC50 values), peptides 

concentration and yield of the post-pancreatic < 3 kDa permeate and peptide fractions obtained 

through RP-HPLC purification of the post-pancreatic fraction. 

 

 

 

 

 

 

 

 

 

 

a yield was calculated as follow: (peptides concentration in the fraction)*100/ (peptides concentration in the post-

pancreatic < 3 kDa permeate). 
bIC50 is defined as the concentration of peptides needed to inhibit of 50% ACE activity. 

 

Peptides 

concentration 

(mg/mL) 

Estimated yielda 

(%) 

IC50
b 

(µg peptides/mL) 

< 3 kDa permeate 4.53 ± 0.12 100 105.6 ± 2.1 

HPLC F1 0.98 ± 0.05 21.7     6.4 ± 0.1 

HPLC F2 0.67 ± 0.01 14.8   18.1 ± 1.0 

HPLC F3 0.62 ± 0.02 13.7     5.5 ± 0.1 

HPLC F4 0.56 ± 0.01 12.4     5.4 ± 0.2 

HPLC F5 0.59 ± 0.02  13.0   15.1 ± 0.7 



Table 2. Peptides identified in the RP-HPLC fraction F1 of < 3 KDa permeate obtained from 

Phaseolus vulgaris after simulated gastro-intestinal digestion 

 

 
Observed 

mass (m/z) 

Calculated 

massa 
ppm 

Peptide 

sequenceb 

Protein 

precursor 
Bioactivityc Ref. 

       

622.220 622.220 0 EEEES 
α and β subunits 

of phaseolin 
  

334.163 334.161 6.0 VSE various proteins   

331.236 331.234 6.0 ALxK 
α and β subunits 

of phaseolin 
  

279.159 279.170 39.4 LxF 
α and β subunits 

of phaseolin and 

other proteins 

ACE-inhibitor 

(LF IC50= 349 

µmol/L; IF 

IC50= 930 

µmol/L) 

Meisel 1998; 

Cheung et al. 

1980 

269.160 269.161 -3.7 LxH 

α and β subunits 

of phaseolin and 

other proteins 

Antioxidant 

activity (LH) 

Chen et al. 

1996 

247.131 247.139 -32.4 EV 

α and β subunits 

of phaseolin and 

other proteins 

ACE-inhibitor 

(IC50=nd) 

van Platerink 

et al. 2008 

233.115 233.113 8.6 DV 

α and β subunits 

of phaseolin and 

other proteins 
  

219.134 219.134 0 TV various proteins   

205.120 205.118 9.8 SV various proteins   

189.124 189.123 5.3 AV various proteins   

aMonoisotopic mass 
bLx indicates leucine or isoleucine 
cPotential bioactivities were achieved from the BIOPEP database 

 



Table 3. Peptides identified in the RP-HPLC fraction F3 of < 3 KDa permeate obtained from 

Phaseolus vulgaris after simulated gastro-intestinal digestion 

 

 
Observed 

mass (m/z) 

Calculated 

massa 
ppm 

Peptide 

sequenceb 

Protein 

precursor 
Bioactivityc Ref. 

       

519.240 519.241 -1.9 NGVET various proteins   

503.284 503.282 4.0 ALxDGK 
α and β subunits 

of phaseolin and 

other proteins 
  

471.297 471.293 8.5 NLxPK various proteins   

442.277 442.277 0 VAPR various proteins   

375.188 375.187 2.7 ALxDG 

α and β subunits 

of phaseolin and 

other proteins 

  

352.201 352.198 8.5 VPH 

α and β subunits 

of phaseolin and 

other proteins 

  

346.195 346.197 -5.8 VVE various proteins   

311.126 311.124 6.4 EY 
α and β subunits 

of phaseolin and 

other proteins 

ACE-inhibitor 

(IC50= 2.7 

µmol/L) 

Wu et al. 2008 

290.172 290.171 3.4 AVT various proteins   

247.130 247.129 4.1 DLx 

α and β subunits 

of phaseolin and 

other proteins 

  

233.150 233.150 0 TLx 

α and β subunits 

of phaseolin and 

other proteins 

  

203.140 203.139 4.9 ALx 
α and β subunits 

of phaseolin and 

other proteins 

ACE-inhibitor 

(AI IC50= 3.4 

µmol/L); 

dipeptidyl 

peptidase IV 

inhibitor (AL 

IC50= 882 

µmol/L) 

Nakahara et al. 

2010; 

Nongonierma 

et al. 2013 

189.124 189.123 5.3 GLx 

α and β subunits 

of phaseolin and 

other proteins 

ACE-inhibitor 

(GL IC50= 2500 

µmol/L; GI 

IC50= 1200 

µmol/L) 

Cheung et al. 

1980 

aMonoisotopic mass 
bLx indicates leucine or isoleucine 
cPotential bioactivities were achieved from the BIOPEP database 

 



Table 4. Peptides identified in the RP-HPLC fraction F4 of < 3 KDa permeate obtained from 

Phaseolus vulgaris after simulated gastro-intestinal digestion 

 

 
Observed 

mass (m/z) 

Calculated 

massa 
ppm 

Peptide 

sequenceb 

Protein 

precursor 
Bioactivityc Ref. 

       

669.331 669.357 -38.8 VNPDPK various proteins   

650.265 650.263 3.1 SGSGDEV 
α and β subunits 

of phaseolin 
  

624.274 624.299 -40.0 FNEKS various proteins   

600.343 600.335 13.3 AVEGPK various proteins   

577.248 577.246 3.5 NLxDSE various proteins   

437.268 437.251 38.9 LxAPH various proteins   

409.173 409.172 2.4 FNE various proteins   

400.257 400.255 5.0 VGPK various proteins   

390.193 390.187 15.4 LxEE various proteins   

389.202 389.203 -2.6 LxQE various proteins   

376.174 376.171 8.0 EDLx various proteins   

374.210 374.203 18.7 AVGGA various proteins   

362.191 362.192 -2.8 LxET various proteins   

360.216 360.213 8.3 LxVE various proteins 

ACE-inhibitor 

(LVE IC50= 14.2 

µmol/L) 

Qian et al. 

2007 

359.229 359.229 0 VLxQ various proteins   

300.192 300.192 0 LxAP various proteins 

ACE-inhibitor 

(LAP IC50= 3.5 

µmol/L; IAP 

IC50= 2.7 

µmol/L) 

Fujita et al. 

2000 ; Motoi 

and Kodama 

2003 

295.129 295.129 0 EF various proteins 

Renin inhibitor 

(IC50= 22.7 

µmol/L) 

Li and Aluko 

2010 

281.113 281.113 0 DF various proteins   

261.145 261.145 0 ELx 

α and β subunits 

of phaseolin and 

other proteins 

  

253.118 253.118 0 SF various proteins 
ACE-inhibitor 

(IC50= 130 

µmol/L) 

Meisel et al 

2006 

237.124 237.123 4.2 AF 

α and β subunits 

of phaseolin and 

other proteins 

ACE-inhibitor 

(IC50= 190 

µmol/L) 

Cheung et al. 

1980 

231.170 231.170 0 VLx various proteins   



229.155 229.155 0 PLx 

α and β subunits 

of phaseolin and 

other proteins 

ACE-inhibitor 

(IC50= 337 

µmol/L) 

Byun and Kim 

2002 

223.108 223.108 0 GF 
α and β subunits 

of phaseolin and 

other proteins 

ACE-inhibitor 

(IC50= 630 

µmol/L) 

Cheung et al. 

1980 

aMonoisotopic mass 
bLx indicates leucine or isoleucine 
cPotential bioactivities were achieved from the BIOPEP database 

 

 


