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Abstract—Controlling the differential expression of many thou-
sands different genes at any given time is a fundamental task of
metazoan organisms and this complex orchestration is controlled
by the so-called regulatory genome encoding complex regulatory
networks: several Transcription Factors bind to precise DNA
regions, so to perform in a cooperative manner a specific
regulation task for nearby genes. The in silico prediction of these
binding sites is still an open problem, notwithstanding continuous
progress and activity in the last two decades. In this paper we
describe a new efficient combinatorial approach to the problem of
detecting sets of cooperating binding sites in promoter sequences,
given in input a database of Transcription Factor Binding Sites
encoded as Position Weight Matrices. We present CMStalker,
a software tool for composite motif discovery which embodies a
new approach that combines a constraint satisfaction formulation
with a parameter relaxation technique to explore efficiently the
space of possible solutions. Extensive experiments with twelve
data sets and eleven state-of-the-art tools are reported, showing
an average value of the correlation coefficient of 0.54 (against
a value 0.41 of the closest competitor). This improvements in
output quality due to CMStalker is statistically significant.

Index terms: Algorithms, Biology and genetics

I. INTRODUCTION

Biological Motivation. Transcription Factors (TF) are pro-
teins that bind to short specific stretches of DNA, called
TFBS - Transcription Factor Binding Sites, usually in the
proximity of genes and participate in regulating the expression
of those genes [10]. The discovery of truly functional TFBSs
is an important step in order to elucidate gene regulatory
networks; this is witnessed by more than a hundred algorithms
that have been proposed over the last two decades for the
prediction “in silico” of single TFBS (see [49] and the
many references contained therein). However, especially in
eukaryotes, gene regulation involves a cohort of cooperating
TFs, which typically have binding sites located in a short
span within the genes’ promoter, as well as enhancer and
silencer, regions. The combinatorial nature of this cooperation
is exploited by a number of other algorithms for the prediction
of corresponding TFBS clusters, a task that is often termed as
composite motif (CM) (or pattern) discovery in the literature
(see [12] for one of the earliest contributions using the term

A preliminary version of this paper appeared in the Proceedings of the 7th
Learning and Intelligent OptimizatioN Conference (2013).

“composite pattern”). Regions containing cooperating TFBS
are also called Cis-regulatory modules (CRM for short).
Problem formalization. In this paper we address a well-
studied variant of the composite motif discovery problem
that can be informally stated as follows: given a set of
DNA sequences, typically taken from the promoter regions
of co-regulated genes, and given descriptions of DNA binding
affinities (aka simple motifs) for allegedly cooperating TFs,
predict the location and composition of sites bound by (subsets
of) those TFs (composite motifs).
Models for Composite Motifs. Composite motifs are defined
by three main features: the type of the component TF, the
order and orientation in which the the TFBS appear in the
gene’s upstream sequence, and the relative mutual distances
of the TFBS’s. Some models impose a stringent rule on the
order/orientation aspects (e.g. [54]) while other (see. [52]) do
not impose a precise ordering. Indeed the degree to which
biologically relevant CRMs are structured or unstructured is
still largely unknown [28] [38], and it is conjectured that the
TFBS order impact more on the fine working of the CRM,
rather than being a signature of CRM presence or absence [9].
In our setting we use a model in which order is not stressed,
and only TF composition and the relative TFBS distance are
highlighted, though these two factors play different roles.
Proposed novel algorithm overview. We describe here CM-
Stalker, a composite motif discovery tool whose computational
core is a combinatorial search algorithm that explores the
space state of possible solutions by progressively relaxing
some (internal) parameters. Our algorithm can be seen as a
very specialized form of constraint satisfaction engine with
a specific strategy used to explore the configuration space of
solutions determined by the two main parameters (quorum and
window size). Our algorithm uses the combinatorial fingerprint
of the composite motif in the solution-generation phase, and
a distance uniformity constraints in a subsequent solution-
filtering phase, but without any hard threshold. CMStalker also
uses a statistical filtering criterion, based on the approximation
of the p-values of recurrent groups of potential TF binding
sites (see Section III), using the same approach adopted in
[40] for modules. This strategy can be appreciated in contrast
to, say, CPMmodule that employs instead a generic Frequent
Itemset Mining tool, not specifically designed for solving the
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Composite Motif problem, in which the internal handling of
the constraints is rather blind to their nature.
Input parameters. One of CMStalker’s main design goal was
to bring simplicity of operation to end-users. This meant ruling
out many of the so-called nuisance parameters [21], i.e., user-
defined quantities that drive the internal algorithms but that
are either perceived of little biological relevance, or whose
precise values are difficult to set in advance. As a consequence
of this objective, CMStalker only needs two mandatory input
parameters, namely a set of DNA sequences to be searched
for motif clusters and a set of Position Weight Matrices
(PWMs) describing TF-DNA binding affinities. Such matrices
are typically obtained from known and trusted databases, such
as TRANSFAC [55] and Jaspar [39]. However, concerning
this latter point, we stress that CMStalker is also able to run
third party software packages for the de-novo motif discovery
(see [29]); these pieces of software can be employed to
“synthesize” new PWMs, to be used as an alternative to known
matrices from the public databases. PWM have been selected
as formalism for modeling the specificity of protein-DNA
interactions since it is a widely used standard [44], however,
the core algorithm with minor modifications would be able to
use also other models for TF binding such as HMM, or the
recently proposed transcription factor flexible model (TFFM)
of Mathelier and Wasserman [31].
Experiments. We evaluate CMStalker on three different
benchmarks of quite different nature: (1) the twelve datasets
(from various organisms) considered by Klepper et al. in [26];
(2) the synthetic dataset introduced by Xie et al. in [56] (from
human, mouse and chicken genomes); (3) the dataset of cis-
regulatory regions in early stage development of Drosophila
considered by Ivan et al. in [22]. We compare the results
obtained by CMStalker, using various performance metrics,
against those of twelve1 other published tools. These are
the eight tools analyzed in [26] (namely CisModule [59],
Cister [14], Cluster-Buster [15], Composite Module Ana-
lyst [25], MCAST [3], ModuleSearcher [1], MSCAN [23]
and Stubb [43]), and moreover COMPO [40], MOPAT [20],
CORECLUST[33], and CPModule [18], [46]. The resulting
tool/dataset/metrics matrix is clearly “incomplete”, since no
single tool has been previously tested over all the above
mentioned data, but nonetheless quite dense to provide a solid
ground for evaluations. Except for MOPAT and CPModule,
we only report published results, in order to avoid the risk of
sub-optimal use of some tool (e.g., wrong parameter settings).
Overview of results. Extensive experiments with twelve data
sets in [26] and eleven state-of-the-art tools are reported in
Section V, showing an average value of the correlation coeffi-
cient of 0.54 (against a value 0.41 of the closest competitor).
The correlation coefficient is a standard measure that takes real
values in the range [−1..+ 1], with +1 being the situation of
perfect correlation, −1 of perfect anti-correlation, and 0 of sta-
tistical independence (random correlation). This improvements
in output quality due to CMStalker is statistically significant,
as measured with the Friedman aligned test. On a second
benchmark set in [56], for increasing level of induced noise,

1See Table 2 in Suppl. Materials.

CMStalker has qualitatively roughly the same performance
levels as the best of five other methods.
The results computed by CMStalker have quality which is
superior, more often than not, to those of the competitors
(see Section V), especially if one considers that they have
been obtained using a single set of parameter values (i.e.,
no parameter fitting on the single data sets has been done).
CMStalker can be classified as a conservative motif discovery
tool. Actually, when CMStalker does not gather sufficiently
strong evidence to report a combination of TFBS as being
potentially functional, it does not report any answers at all.
While this phenomenon in general sacrifices sensitivity, it
allowed us to adopt a search methodology based on parameter
relaxation that we regard as one the key design choices leading
to the observed good experimental results.
The problem of detecting functional regions in DNA sequence
data is a quite challenging one, and a killer “general” com-
putational solutions might not exist. While more comparisons
are needed, against yet other methods and/or using different
benchmark data, we feel however that the results obtained give
comforting evidence of the merits of the approach embodied
in CMStalker in realistic application scenarios.
CHIP-seq variants. Chromatine immunoprecipitation experi-
ments coupled with next generation sequencing (CHIP-seq) [4]
[51] produce data useful for the in-vivo identification of func-
tional TFBS in TF-specific and tissue-specific experiments.
Processing CHIP-seq data, however, requires specialized al-
gorithmic techniques that are specific to this technology, in
order to be effective. In this work we do not rely on this type
of additional data, and thus we compare our performance only
with those methods that work in a setting similar to the one
we adopted. The development of variants of our algorithm that
take advantage of CHIP-seq data is left for future research.
Organization of the paper. The rest of the paper is organized
as follows: Section II outlines previous results and tools that
provide the landscape in which to place our present contribu-
tion; Section III introduces the technical notions required in the
following Section IV, which describes the algorithm embodied
in CMStalker; finally, Section V reports experimental results.

II. COMPOSITE MOTIF MODELS AND RELATED WORK

A (simple) motif is a model of binding sites for just a tran-
scription factor. In the following, for ease of language, we will
use the terms motif and binding sites interchangeably. Simple
motifs are often described by means of Position Weight Ma-
trices (PWMs) (see Section III for formal definition). Several
hundreds of experimentally determined PWMs for identifying
TFBS are available in databases such as TRANSFAC [55]
and Jaspar [39]. However, the highly degenerate nature of
the TFBS implies that, when scanning sequences for PWM
matches, many false positive non-functional matches are quite
likely to occur. Thus additional information and criteria are
needed to filter out false positive matches.

Composite motifs (a.k.a. combinatorial or higher-order mo-
tifs) describe sets of simple motifs, sometimes called boxes,
separated by stretches of DNA of limited size (say, < 20
bp). The distance constraint seems typically more important
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than motif ordering; while alterations in the distances between
simple motifs usually kill transcription, a different motif order
may be simply associated with a different transcriptional
behavior (see [42]).

Before proceeding, we must address an important issue,
which is only apparently terminological. Given a composite
motif and a set of corresponding binding sites in different input
sequences, some authors identify the regions spanned by those
sites as Cis-Regulatory Modules (hereafter CRMs) [48], [11],
[26], [33]. This is all but a universally accepted viewpoint.
Many influencing works in the fields clearly distinguish the
two concepts of composite motif and CRM (see, e.g., [6],
[22], [45]), attaching to the latter a broader semantics.

Such broader characterization of the notion of CRMs has
to do more with functional output (i.e., the “battery of gene
they orchestrate” [22]) than with site affinities, as is the case
of composite motifs. The already mentioned paper by Su et
al. [45] even equates the notions of CRM and that of a whole
promoter. A practical consequence of this viewpoint is that
the functional regions that must be sought by computational
methods are much longer than those typically spanned by
composite motif clusters (compare the 500-1000 bp target size
in [22] against the maximum 100 bp target size of [48]).
CMStalker has been designed to detect composite motifs in
the above sense rather than CRMs; hence, in this paper,
we generally avoid any reference to Cis-Regulatory Modules.
However, it is true that the detection of recurrent motif clusters
is one of the techniques adopted to locate such functional
modules. It is precisely for this reason that we have tested
CMStalker also on a dataset of Cis-Regulatory Modules in
the Drosophila genome (see Section V).

In CMStalker we adopt the simple set model to describe
composite motifs. According to this, a higher-order motif
is just characterized by its component simple motifs, with
just a mild uniformity constraints on the total span of the
region containing the composite motif. We made this choice
for our tool to require minimal information about the motif
structure; actually, while inter-box distances are important for
the characterization of the mechanisms of functional sites, the
need for their specification clearly limits the tools applicability
when only detection is sought. However, as we shall see in
Section IV, our algorithm uses information on the overall
span of the prospective composite motifs to enforce some
regularities in the overall length of the reported output set.

The set model is simple and yet quite a reasonable one; it
has been adopted in some of the earliest attempts to identify
clusters of binding sites in the Drosophila genome [6] and
in the muscle and liver datasets that we also consider in
the present paper [2]. More recently, the set model has been
adopted in COMPO [40] and CPModule [18], [46].

Another popular model still regards composite motifs as
sets of simple motifs, but includes ordering and distance
information on their occurrences. Structured motifs or tuple
motif models are the often used names for these cluster of site
abstractions. A pioneering work on structured motif discovery
is that by Marsan and Sagot [30]. One of principal merits
of this influential contribution is to highlight the power of a
direct approach to finding clusters of motifs, namely to make

it possible even for a single “subtle” motif to be captured
when considered in combination with other signals (however,
see [13] for an in-depth comparison of direct methods with
algorithms based on the construction of structured motifs by
simple motif combination). This model is also very often used
in researches where simple dyad motifs (i.e., composite motifs
made of just two boxes) are sought [19], [12], [57], [58].

A third model often adopted to represent composite motifs is
the Hidden Markov Model (HMM). This is very powerful and
much a richer abstraction than the previous two. Essentially,
a HMM for composite motif description is a Markov chain
whose states are associated to positions in the simple motifs
or in the background; in each state the HMM “emits” one
of the four nucleotides according to a probability distribution
(computed either from the PWM representation of the motif
or from the background frequencies). Different HMMs models
adopt different definitions for the transition probabilities and
differ in the way they are computed. By accurately defining
these probabilities, a HMM may model sets of unstructured
motif as well as structured motifs. One of the first attempts to
use HMMs to discover clusters of motifs is the one described
in [34]. Other popular tools that model composite motifs as
HMMs include Cister [14], Cluster-Buster [15], Stubb [43],
and CORECLUST [33]. Among these, Stubb is especially
worth mentioning because it computes the transition proba-
bilities using expectation-maximization, without requiring any
user-supplied parameters.

III. TECHNICAL DEFINITIONS

In this Section we briefly define/recall the fundamental
notions used in the rest of the paper (a summary can be found
in Table 1 of Supplementary Materials).

Let D = {a,c,g,t} be the alphabet representing the four
DNA base pairs (bp). A short word w ∈ D∗ is called an
oligonucleotide, or simply oligo. Typically |w| ≤ 20. Let S ⊆
D∗ be a set of n DNA fragments, e.g., sequences of bps from
the promoter regions of some genes. We say that w occurs in
S ∈ S if and only if w is a substring of S.

From a computational point of view, a DNA motif (or
simply motif ) is a representation of a set of oligos that
describe potential Transcription Factor (TF) binding loci. The
representation can be made according to one of a number of
models presented in the literature. Here we adopt the well-
known Position Weight Matrices (PWMs).

A PWM M = (mb,j), b ∈ D, j = 1, . . . , k, is a 4 × k
real matrix. The element mb,j gives a score for nucleotide
b being found at position j in the subset of length-k oligos
that M is meant to represent. Scores are typically computed
from frequency values. But how can we associate oligos to
PWMs? Different answers have been given to this question in
the literature (see, for instance, [24], [8], [37]). Here we adopt
perhaps the simplest one.

Let M be a PWM and consider a word w = w1w2 . . . wk

over Dk: We let score of w (w.r.t. M ) denote the sum of
the scores of each nucleotides, i.e., SM (w) =

∑k
j=1mwj ,j .

The maximum possible score given by M to any word in Dk

is clearly SM =
∑k

j=1 maxb∈Dmb,j . Then we say that M
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represents word w iff SM (w)
SM

≥ τ , for some threshold value
τ ∈ (0, 1]. In the following, we will identify motifs with their
matrix representation.

A motif M has a match (or occurrence) in S ∈ S if and
only if there is a substring of S that is represented by M . We
borrow some terminology from [40] and call discretization the
process of determining the matches of a motif in a set of DNA
sequences.

A motif class is a set of motifs. Ideally, in CMStalker all
the motifs in a class describe potential binding sites for a
single Transcription Factor. For this reason, we often freely
speak of Transcription Factors to refer to motif classes. A
factor match in a DNA sequence is thus a match of any of the
motifs in the class associated to that factor. Note that motif
classes have the ability to represent oligos of different lengths
for the same TF, since different matrices usually exist for the
same factor that have a different number of columns. Let F
be the set of factors having matches in S. We consider a one-
to-one mapping between F and an arbitrary alphabet R of |F|
symbols, which we refer to R as the mapping alphabet.

A combinatorial group (or just group) is a collection of
not necessarily distinct TFs that have close-by matches in a
sufficiently large fraction of the input sequences (assuming
the number N of sequences is clearly understood, we silently
equate the fraction q ∈ (0, 1] and the absolute number of
sequences dq ·Ne). The minimum fraction allowed for a set of
TFs to be considered a combinatorial group is termed quorum.
The width or span of a group match in a sequence S is the
“distance” (measured in bps) between the first bps of first and
last TF match of the group in S.

In set-theoretic terms, groups are multisets. In CMStalker
they are represented as character sorted strings over the map-
ping alphabet R. CMStalker’s algorithmic core (see Section
IV-C) efficiently implements special union and intersection op-
erations (denoted ∨ and ∧, respectively), defined on maximal
collections of pairs 〈M,n〉, where M is a multiset and n is
a positive integer. Maximality means that if P is one such
collection and 〈M,n〉 ∈ P , then there is no other 〈M̄, n̄〉 in
P with both M̄ ⊇M and n̄ ≥ n.
The definition of ∨ is easy2:

Union: P ∨Q = {p ∈ P ∪Q : p is maximal in P ∪Q}

where ∪ denotes union over sets. As for ∧, we first define it
for collections containing just a single pair:

{〈M1, n1〉} ∧ {〈M2, n2〉} =

{〈M1 ∩M2, n1 + n2〉}if M1∩M2 6=∅ ∪
{〈M1, n1〉}if M1\M2 6=∅ ∪ {〈M2, n2〉}if M2\M1 6=∅

Then, for arbitrary sets P1 = {p(1)i }i=1,...,h and P2 =

{p(2)j }j=1,...,k:

Intersection: P1 ∧ P2 = ∨i,j
({
p
(1)
i

}
∧
{
p
(2)
j

})
.

2A quick recap of the standard operations on multisets used in the
definitions of ∨ and ∧ can be found in the Supplementary materials.

Our last definition is that of Composite Motif (CM). A
CM is a set of close-by TF matches in some input sequence.
CMs represent CMStalker’s best guess for functional TF
binding regions. Note that no quorum constraint is imposed
to composite motifs. Indeed, as collection of factor matches,
composite motifs are clearly unique objects. As we shall see in
Section IV, CMStalker builds composite motifs by extending
the matching of some combinatorial group.

IV. ALGORITHM

CMStalker main operation mode, which we describe in
this paper, is composite motif discovery in a set S =
{S1, . . . , SN} ⊆ D∗ of DNA sequences, using a collection
of PWMs. However, CMStalker is also able to run a number
of third-party motif discovery tools, the output of which can
then be used either to directly discover putative composite
motifs, or to create a number of PWMs to be later used under
the main operation mode.

In many cases, the number of matrices available, which
describe the binding affinities of the factors involved in the
experimental protocol upstream data analysis, is much larger
than the number of such factors. This often happens when
many PWMs are loaded from an annotated database or when
the input matrices are produced by third-party motif discovery
tools. In particular, a single factor may be described by many
different matrices of possibly different lengths. CMStalker is
able to handle this latter state of affairs, provided that the user
has some additional knowledge on the biological experiment.

1) The user knows number and identities of the TFs
involved. In this case s/he may submit to CMStalker
different input files with different sets of matrices, each
one describing affinities for a single TF.

2) The user only knows the presumed number of TFs in-
volved, but either does not knows their detailed identities
or, even if s/he does, s/he is not able to provide clean
sets of PWMs for each.

If none of the above applies, CMStalker will treat any input
matrix (or matrix synthesized by an external tool) as describing
a distinct factor.

Overall, CMStalker’s main operation mode amounts to the
following five steps, which we describe in details in the rest
of this section.

1) PWM clustering (optional), to organize the matrices in
groups (factors) of close-by PWMs;

2) Discretization, to detect factor matches in the input
sequences;

3) Group finding, which is the crucial combinatorial group
detection step;

4) Group filtering, for the screening of groups according to
various filtering criteria;

5) Composite motif prediction, to form the putative com-
posite motifs out of groups.

A. PWM clustering

This step is performed if (and only if) case 2) above applies,
i.e., if the user provides the number of relevant TFs together
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with one “undistinguished” set of matrices (i.e., a single input
PWM file). Note that in case 1) the “clustering” is implicitly
performed by the user by submitting to CMStalker multiple
input PWM files.

To perform the clustering, CMStalker first builds a weighted
adjacency graph whose nodes are the matrices and edges the
pairs (M1,M2) such that the similarity between M1 and M2

is above a given threshold. Currently, CMStalker uses pairwise
normalized correlation [47].

Then, CMStalker executes a single-linkage partitioning step
of the graph vertices, which essentially reduces to a variation
of Kruskal’s algorithm for the construction of a maximum
cost spanning forest. More precisely, let Nm be the number
of matrices and let NF be the number of TFs; then CMStalker
performs at most min{|E|, Nm − NF } steps of Kruskal’s
algorithm, where E is the set of edges in the similarity graph.
The returned clusters are the graphs induced by the vertices
in distinct trees of the forest. Finally, CMStalker identifies the
dense cores in each set of the partition, via pseudo-cliques
enumeration [50], returning them as the computed clusters.

B. Discretization

Even with the most accurate PWM description of a motif,
the problem of determining the “true” motif matches in the
input sequences is all but a trivial task. Actually, whatever the
algorithm adopted, there is always the problem of setting some
threshold σ to separate matches from non-matches, a choice
that may have a dramatic impact on the tool’s performance.
In general, low thresholds improve sensitivity while high
thresholds may improve the rate of positive predicted values
(PPVs). The strategy adopted in CMStalker is to moderately
privilege sensitivity during discretization, with the hope to
increase the positive predicted rate thanks to the combinatorial
effect of close-by matches. We turned this general goal into
precise threshold values by taking TF representation issues as
well as computational efficiency concerns into account.

We observe that, when different “accurate” matrices are
known to describe functional loci for a single TF, it is
nonetheless very likely that, for any particular site, some of
them do dot produce high scores. Moreover, many matrices
almost unavoidably imply a lot of matches, which in turn have
a strong impact on the computational cost of our algorithm
(and not only ours), as we will point out in Section IV-F. For
the above reasons, we allow for the adoption of more than
one threshold value; in particular, in our experiments we start
with the quite high 0.7 value adopted by TAMO3 for TFs
represented by five or more matrices and decrease it gradually
to the minimum value of 0.5 for motifs represented by one
matrix. The latter allows us to possibly catch weak signals
without paying too much in terms of computational cost.

All the experiments of Section V were performed using
fixed threshold values. These can be varied in the configuration
file (which means they are essentially hidden to the typical
user), and what one can reasonably expect is that different
thresholds on different datasets may return very different

3Our software uses TAMO [17] for “low-level” motif representation and
manipulation.

results. The average good quality of CMStalker’s predictions,
across different datasets, suggests that the above criterion
(rather than the particular threshold values adopted) has indeed
some merits.

C. Group finding

The previous two steps result in a set of motif classes
(factors) and a set of factors matches, which are the “input” to
the group finding step. To this end, CMStalker uses a simple
search strategy, with the aim of trading computation time for
accuracy: it progressively relaxes two internal parameters until
each motif class is possibly included in at least one group.
These parameters are the maximum allowed combinatorial
group width and the minimum quorum for combinatorial
groups and can be set in the configuration file.

Formally, let {W1, . . . ,Wr} be a set of window sizes and
let {q1, . . . , qs} be a set of quorum values, with W1 < W2 <
. . . < Wr and 1 ≥ q1 > q2 > . . . > qs > 0. For a given
window size value W and sequence Si, we say that a multiset
m over R is feasible iff each factor of m corresponds to a
match in Si and the span of all the matches in Si is bounded
by W .

Intuitively, for each pair W, q, CMStalker computes all
maximal feasible groups with respect to window size W and
quorum q (i.e., that have matches in at least dq ·Ne sequences).
If all letters of R are included in the found groups, CMStalker
stops. Otherwise, CMStalker relaxes, in alternate order, one
of the constraints on width (considering a larger value) and
quorum (smaller value).

Algorithm IV-C describes the group finding step in details.
Note that, thanks to the properties of the ∨ and ∧ operators, the
pairs 〈M,n〉 included in GN are maximal, with n satisfying
the last fixed quorum value. Clearly, even with the weakest
parameter values (i.e., widest window and smallest quorum),
some factors may not be represented in G. This is not nec-
essarily a problem, since the user may have provided PWMs
for irrelevant factors.

In current CMStalker implementation, the relaxation step
(step 15) involves the window size and the quorum value in
an alternate order. Note that a verbatim implementation of
Algorithm IV-C might be quite inefficient. For instance, when
relaxing the quorum value, step 3 needs not be computed.
On the other hand, the pairwise intersections in step 8 can
be performed quite efficiently thanks to the character sorted
string representation of multisets of factors.

D. Group filtering

The filtering stage aims at picking groups that: (1) are strong
enough from a conservation point of view; (2) further exhibit a
regularity in terms of span of the matches; (3) satisfy a simple
statistic criterion.

1) “Group filtering”: This phase aims at eliminating those
groups that are not “strong enough”. As outlined in
Section IV-B, a weak TF match may be allowed, due
to possibly low thresholds for poorly represented TFs.
At the group level, though, we impose stronger re-
quirements, with the aims of both improving PPVs
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1: W ←W1 and q ← q1

2: for i = 1, . . . , N do

3: Compute the maximal multisets M
(i)
1 , . . . ,M

(i)
ni that are

feasible for W and Si

4: Pi ← {〈M (i)
1 , 1〉, . . . , 〈M (i)

ni , 1〉}

5: end for

6: G1 ← P1

7: for i = 2, . . . , N do

8: Gi ← Gi−1 ∧ Pi

9: end for

10: From GN discard all pairs 〈M,n〉 such that n < dq ·Ne

11: if multisets in GN include all the letters of R or W = Wr and

q = qs then

12: G← {M : 〈M,n〉 ∈ GN}

13: return G

14: else

15: Relax W or q (or both)

16: Jump to step 2

17: end if

and possibly limiting the number of candidates, which
highly affects the cost of the group finding step (see
Section IV-F). For this purpose, a threshold value τ
is again specified in the CMStalker configuration and
use to discard those group matches that exhibit less
than τ × 100 percent of conserved bps over all TF
matches of the group. Here conserved simply means
that the particular bp it’s the one that scores the highest
in the corresponding PWM column. Also the value of
this parameter was kept constant in all the experiments
performed.

2) “P-value filtering”. CMStalker computes the p-value of
each combinatorial group according to the methodology
adopted in [40] for the modules, and discards those
groups with p-value higher than a user specified thresh-
old (which defaults to the “usual” value 0.05).

3) “Group clustering”. This step is performed only under
the ZOOPS (Zero or One Occurrence per Sequence)
model of motif distribution, which is the default in CM-
Stalker (the alternative model is usually termed ANR,
which stands for “Any Number of Repetitions”). For
each remaining maximal group, CMStalker performs a
clustering of all its matches with respect to the widths
of the matches themselves. For each sequence where the
group occurs, it then returns the match whose width is
closest to the most recurring group width. Note that each
sequence may still contain more than one group, but not
of the same “type” (i.e., factor composition).
The choice of this clustering step is motivated by the
observation that there is a wide literature on the so

called structured motifs (see, e.g., [36]) where the order
of the TF matches and the inner spacings between
the single motifs play a crucial role. We do not use
any of these pieces of information, but simply note
that, if the spacings are fixed, then the width of the
composite motif is fixed (or exhibits small oscillations)
as well. Hence, this information might be captured by a
clustering strategy.

E. Composite motif prediction

For any “surviving” group g in G, CMStalker first retrieves
its actual matches from the input sequences; then tries to
merge overlapping or close-by groups of matches provided
that the resulting span of the factor matches does not violate
the window constraint. These merged groups are the candidate
composite motifs being predicted. However, under the ZOOPS
model, only one composite motif is returned, namely the one
that contains more factor matches.

Note that it is precisely this step that makes composite
motifs unique objects, in the sense that they do not have to
satisfy (after merging) any quorum constraints.

F. Computational complexity

The cost of the bare CMStalker algorithm is dominated by
the module finding step or, more precisely, by the combinato-
rial group finding sub-process. It is easy to see that this can be
exponential in the length of the longest group g (regarded as a
string over R) in any of the initial sets Mi’s, simply because
g may have an exponential number of maximal subgroups that
satisfy also the quorum constraint. In turn, the length of g may
be of the order of module width and hence of sequence length.

The above worst-case cost can indeed be achieved, espe-
cially if one gives many PWMs in input to CMStalker (say,
all the PWMs available in the TRANSFAC database), that are
very likely to incur in a huge number of (non functional)
factor matches. One possibility to keep running time under
control is to bound the cardinality of the groups and/or the
number of matches in each sequence. For this reason, there are
two additional parameters that control these complexity related
quantities, which are stored in the configuration file. We shall
say more on this in Section V, where we show the actual
running times obtained on input the “synthetic benchmark”
(that we used for size scalability reasons).

At the other extreme, there is the situation where we only
have few TFs and look for sites where all of them bind (as
for the TRANSCompel datasets of Section V). In this case the
cost of the sub-process is linear in the number of sequences.

If clustering is required the overall cost is also bounded from
below by a quadratic function of the number of input PWMs,
since the algorithm computes all the possible distances among
pairs of matrices. This cost indeed dominates the computation
time on the TRANSCompel datasets.

V. EXPERIMENTS

In this section we present the results obtained in experiments
performed on three different benchmark datasets, each de-
scribed in one of the subsequent subsections. We first describe
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the parameter set up for CMStalker, and the functions used to
measure the algorithms’ output quality. Next we describe in
details the three mentioned benchmarks, which we refer to
briefly as the COMPOSITE, XIE, and REDFLY benchmarks,
respectively.

A. CMStalker’s setup

All the experiments were performed with a almost fixed
parameter configuration, which we describe in this section.
The overall good experimental results obtained suggest that
such standard setup can guarantee good performances across
very different datasets. All the parameters are set in the
configuration file only, which essentially means that they are
hidden from the typical end user.
• The threshold parameter were fixed as reported in Section

IV-B.
• The p-value adopted in the filtering stage (Section IV-D)

was 0.05. However, in case of the TRANSCompel data,
where we were just looking for pairs of motifs corre-
sponding to exactly two different TFs, then we simply
did not perform any p-value filtering (i.e., set p-value=1).
This reflects our viewpoint about the merits of statistical
parameters in motif finding, namely that they might
render evident “relative” rather than “absolute” quality
of potential binding locations. Here we have just one
candidate motif, which is returned provided that it is
strong enough by combinatorial evidence.

• the two crucial “optimization” parameters, namely quo-
rum q and window size W (Section IV-C), were fixed as
follows: q = {0.9, 0.8, 0.7, 0.6., 0.5., 0.4, 0.3, 0.2, 0.1},
W = {50, 75, 100, 125, 150}. However, for the REDFLY
dataset we used different values of W , to conform to the
experimental setting of [22] (see Section V-E).

• To limit the possibly exponential growth in running times
(see Section IV-F), we included two additional parameters
upper bounding: (1) the number of hits returned by the
discretization stage in any input sequence, and (2) the
cardinality of the combinatorial groups (see also [40]).
We call these MAXHITS and MAXGROUP, respectively.
MAXGROUP was kept fixed to 8 in all the experiments:
this is usually sufficient to model the clusters of func-
tional TFBSs that occur in practice. Bounding the number
of hits in any input sequence seems to be more delicate.
Recall that we set a low value for the threshold parameter,
with the aim at not loosing weak signals. However, doing
so may produce a large number of hits that severely
impact on the computational cost (Section IV-F). This
does not happen in the COMPOSITE benchmark, but it
is definitely the case for a number of datasets in the other
two benchmarks. To set MAXHITS in general, we per-
formed a study using the XIE benchmark, which allows
a better control of the input parameters (in particular,
the number of PWMs). Figure 1 shows the observed
running times for different datasets (with varying number
of input PWMs) of the XIE benchmark. The exponential
nature of the running time as a function of the number of
hits (confirming the worst-case theoretical analysis and

the impact of an accurate/inaccurate choice of the input
PWM) suggested us to set MAXHITS=20 for XIE and (at
least initially also) for REDFLY datasets. However, in an
attempt to catch more results, we then set MAXHITS=30
for the latter but payed (on input some hard datasets) a
high computation cost, with runs that lasted several days.
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Fig. 1. Running times of CMStalker for XIE datasets with a variable number
of PWMs. The graph highlights the exponential rise of the run time function
starting at MAXHITS=30.

B. Measures used to assess the tool’s output quality at the
nucleotide level

Each composite motif prediction algorithm will output a set
of TF labels and a set of corresponding TFBS (intervals on the
input sequences) which, together, form the algorithm’s predic-
tion of the most likely composite motif for the given input. The
use of benchmarks as input allows us to measure the quality
of each algorithm’s output in terms of a measure of similarity
between the true solution and the reported prediction. Among
the well known methodological frameworks for this task we
follow that of Burset et al. [7] and Tompa et al. [49], which
we outline here below.
For each nucleotide in the input sequences we can label it
with one element from the binary domain {Positive,Negative},
where Positive (abbr. P ) indicates that the nucleotide belongs
to a TFBS in the algorithm’s prediction, and Negative (abbr.
N ) indicates that the nucleotide does not belong to a TFBS in
the algorithm’s prediction. Each prediction can be either True
(abbr. T ) or False (abbr. F ) thus we can group (and count)
the nucleotides into four classes according to the prediction
label, and to the fact that it corresponds to reality or not.

a) nTP is the number of nucleotide labeled Positive, that
are really part of a TFBS.

b) nFP is the number of nucleotide labeled Positive, that
are not really part of a TFBS.

c) nTN is the number of nucleotide labeled Negative,
that are not really part of a TFBS.

d) nFN is the number of nucleotide labeled Negative,
that are really part of a TFBS.
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Clearly we have high similarity between prediction and reality
when nTP and nTN are large numbers relative to nFP
and nFN . In order to capture this intuition several synthetic
indices have can be devised. Denote with nPr the number of
nucleotides in predicted TFBS, we have: nPr = nTP+nFP .
Denote with nGs the number of nucleotides in real TFBS (also
called the ”golden standard”), we have: nGs = nTP +nFN .
A basic measure is Sensitivity4 (abbr. Sn) defined as the ratio
between the number of true predictions of nucleotides in TFBS
over the number of nucleotides in real TFBS:

Sn =
nTP

nGs
=

nTP

nTP + nFN
(1)

A second basic measure is Precision5 (abbr. Pr) defined as the
ratio between the number of true predictions of nucleotides in
TFBS over the total number of nucleotides in predicted TFBS:

Pr =
nTP

nPr
=

nTP

nTP + nFP
(2)

It has been noticed, however, that certain pairs of measures
are antagonistic, in the sense that it is easy to devise relatively
trivial algorithmic strategies to inflate one at the expense of
the other6. For this reason other functions have been proposed
which often can be seen as “mean” values of the antagonistic
pairs. For example in information retrieval it is often used the
F1 measure that is the harmonic mean of the precision and
the sensitivity measures.
Burset et al. [7] introduced the correlation coefficient (abbr.
CC) specifically with the aim of having one such balanced
measure in the area of gene structure prediction, by using all 4
values nTP, nFP, nTN and nFN . The correlation coefficient
has an easy statistical interpretation as a correlation between
two random variables.

CC =

nTP · nTN − nFN · nFP√
(nTP + nFN)(nTN + nFP )(nTP + nFP )(nTN + nFN)

A second balanced measure has been proposed by Pevzner
and Sze [35], called the Performance Coefficient (abbr. PC)
and defined as:

PC =
nTP

nTP + nFN + nFP
(3)

Tompa et al. [49] report also the Average Site Performance
(abbr. ASP), the arithmetic mean of precision and sensitivity:

ASP =
Sn+ Pr

2
(4)

In our experiments we will use CC as the main performance
measure of accuracy, and the others as ancillary measures.
Ivan et al. [22] propose the following evaluation scheme
for evaluating CRM prediction tools. For each data set the
mean value of the length m of the true CRM in the input
sequences is pre-computed and given to the prediction tools

4Sensitivity is also called “recall”.
5Precision is also called PPV (positive predicted value).
6Note that, taken separately, precision and sensitivity use only two of the

four values defined above, which makes it easier to increase one of them by
relatively trivial means.

as an additional parameter. The prediction tools are required
to output a prediction in which the predicted CRM in each
sequence is of length m. In this framework, summing the
contributions over the full set of sequences, we have forced
the constraint nGs = nPr, thus several measures define above
become redundant and, in this context it becomes safe to use
just the PPV value as a measure of accuracy.
This type of analysis is termed “at nucleotide level” since
the initial step is a classification of the nucleotides into four
groups. A similar type of analysis can be carried out also at the
motif level, when we provide the corresponding classification
of the predicted TF (see the Supplementary Materials for an
in-depth discussion).

C. COMPOSITE benchmark

1) COMPOSITE datasets: The first benchmark was pre-
sented in [26]. It is composed of 12 datasets from various
organisms. This benchmark is composed of three subgroups:

a) ten data sets from TRANSCompel in [26]. Each data set
contains a module made up of two TF with two binding
sites, for different TFs from the following set: AP1, Ets,
NFAT, NFκB, CEBP, Ebox, AML, IRF, HMGIY, PU1, and
Sp1. Any dataset is named after the two component TFs:
AP1-Ets, AP1-NFAT, AP1-NFκB, CEBP-NFκB, Ebox-
Ets, Ets-NFκB, NFκB-HMGIY, PU1-IRF, and Sp1-Ets.
In [26], all the matrices corresponding to the same TF
were grouped to form an “equivalence set”, and treated
as if they were one.

b) One data set from [27] on liver specific transcription; this
data set includes modules with up to nine binding sites
of four different TFs.

c) One data set from [53] on muscle specific transcription.
Modules are composed of a number of TFs ranging
between eight sites and five.

We report in Table I basic statistics on the length and number
of sequences, and on number and length of the composite
modules. Further information can be found in Additional Files
of [26].

2) Experimental set up: On the COMPOSITE data set
we performed the most accurate analysis of CMStalker’s be-
haviour (with respect to the other two benchmarks considered),
especially thanks to the results already available in [26], which
we will refer in the following as to the assessment paper. We
were able to compare CMStalker against the eight tools con-
sidered in the assessment paper (CisModule [59], Cister [14],
Cluster-Buster (CB) [15], Composite Module Analyst (CMA)
[25], MCAST [3], ModuleSearcher (MS) [1], MSCAN [23]
and Stubb [43]), as well as three other more recent tools,
namely COMPO, developed by the same research group that
performed the assessment [40], MOPAT [20], and CPModule
[18].

Statistics for
the tools already evaluated in [26] were downloaded from the
authors’ site. Regarding COMPO, we computed the statistics
for liver-specific and muscle-specific datasets starting from
the prediction files made available by the authors at the ad-
dress http://tare.medisin.ntnu.no/compo/. For
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Dataset Seqs Total Modules Module size
Size (bp) min,max,avg

AP1-Ets 16 14860 17 14,99,27
AP1-NFAT 8 6893 11 14,19,16
AP1-NFκB 7 6532 8 18,135,53
CEBP-NFκB 8 7308 8 44,118,84
Ebox-Ets 4 3489 6 16,50,25
Ets-AML 5 4053 5 13,30,19
IRF-NFκB 6 5344 6 23,71,43
NFκB-HMGIY 6 5393 7 10,32,13
PU1-IRF 5 4530 5 12,14,13
Sp1-Ets 7 5787 8 16,117,37
Liver 12 11943 14 26,176,112
Muscle 24 20427 24 14,294,120

TABLE I
A BRIEF OVERVIEW OF THE TEN TRANSCOMPEL SEQUENCE SETS AND

THE LIVER AND MUSCLE DATASETS TAKEN VERBATIM FROM [26].
FURTHER INFORMATION CAN BE FOUND IN ADDITIONAL FILES OF [26].

the TRANSCompel data, we directly used the results provided
at the same address. Predictions for MOPAT and CPModule
were obtained as described in the Supplementary Materials.

3) Results at the Nucleotide level: The first set of ex-
periments involves only CMStalker over the TRANSCompel
datasets. For each dataset we performed two runs, one with
matrices already separated by TF (i.e., giving CMStalker two
PWM input files), and one with mixed matrices. In this second
case we pass to CMStalker only the information on the number
of TFs involved (just two). As Figure 2 shows, the results
obtained are essentially identical, indeed suggesting that the
clustering phase was able to “recognize” the true motif classes.
The fact that sometimes the “mixed PWMs” runs may pro-
duce better results (e.g., for the AP1-Ets and NFκB-HMGIY
datasets of TRANSCompel) is not a contradiction. Actually,
in such cases the clustering stage may have removed some
matrices that produced spurious (non functional) matches. Of
course, also the opposite situation could occur on different
datasets.
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Fig. 2. nCC results for CMStalker on the TRANSCompel datasets, with
separated (left/blue) or mixed (right/red) PWMs.

In the second set of experiments we compared CMStalker (fed

with just one single PWM file) against the eleven competitor
algorithms on the whole collection of twelve COMPOSITE
datasets by measuring the Correlation Coefficient. The results
are shown in Figure 3 and in Table 4 of the Supplementary
materials.
In terms of ranking, CMStalker ranks first in 8 cases while
Cluster-Buster, Module-Searcher, Mopat, and CPModule are
first in one case for each method. CMStalker has a higher
average nCC value of all the methods testes on this data set.

We conclude that, though CMStalker does not beat all other
competing methods on all the data sets, still in terms of ranking
and average nCC values has a far superior performance to all
of them in this extensive experiment. However to make our
statement more robust we perform also a statistical analysis,
which at the best of our knowledge has not been done yet in
this context.

4) Statistical significance: In the attempt to assess the
statistical significance of these results, we first performed
a Friedman aligned non-parametric test using the overall
methodology detailed in [16]) that involved CMStalker and
eleven other tools7.
First we test the null hypothesis that all the considered
algorithms behave similarly, and hence that the average ranks
over the all data sets are essentially the same. This can be
safely rejected, with a p-value about 8.9 · 10−9.
Next we performed a post hoc test associated to the Friedman
statistics, by considering CMStalker as the new proposed
methods to be compared against the other eleven tools. Here
the null hypothesis is that CMStalker has no better perfor-
mance that each of the other tested methods and that the
observed differences are caused by chance.
Table II shows the p-values of the eleven (Friedman
aligned) comparisons, adjusted according to the Benjamini
and Hochberg procedure [5] (also known as False Discovery
Rate, FDR). This methodology takes into account possible
type-I errors in the whole set of comparisons [16]. For all
of the competing algorithm the null hypothesis can be safely
rejected at a threshold well below 0.05. The best competitor
is COMPO, against which the null hypothesis can be rejected
with a p-value around 0.00005. All the other methods fall
behind by several orders of magnitude.

COMPO MS CB CMA MSCAN CP

5·10−5 5·10−12 2·10−12 5·10−16 10−16 2·10−24

MCAST MOPAT Cister Stubb CM

9·10−31 3·10−36 5·10−51 6·10−53 4·10−103

TABLE II
ADJUSTED p-VALUES FOR POST HOC COMPARISONS OF CMSTALKER

AGAINST OTHER 11 TOOLS: MS = MODULESEARCHER, CB =
CLUSTERBUSTER, CMA = COMPOSITE MODULE ANALYST,

CP=CPMODULE, CM = CISMODULE

5) Comparison of CMStalker and COMPO: In this Section
we provide further results to compare CMStalker and COMPO

7We excluded CORECLUST because of the limited availability of homo-
geneous data for the comparisons.
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Fig. 3. Nucleotide level Correlation Coefficient values obtained by 12 tools on the whole collection of COMPOSITE datasets (negative values treated as 0).

on the COMPOSITE benchmark, in order to gain additional
insights.

Figure 4 shows the results obtained on a wider sets of statistics
on the COMPOSITE datasets, separating liver and muscle
from the TRANSCompel’s data. For the latter, the results
shown in Figure 4 combine the results obtained on the single
datasets (i.e., counting the total numbers of positive, positive
predicted, negative, and negative predicted nucleotides over
the all datasets). Regarding liver and muscle, we point out
that we have reported the statistics most favorable to COMPO
among those obtained from the three different prediction
files provided by the authors. CMStalker has slightly better
performance than COMPO on muscle data on all three bal-
anced measures (PC, ASP and CC), worse performance on

Liver data, and better performance on TRANSCompel’s data.
In Supplementary Materials we report the precise numerical
values used to draw the figures presented in this section,
as well as the results obtained on additional TRANSCompel
datasets, in which the “true” matrices corresponding to the TFs
involved have been mixed with other (not relevant) PWMs.

6) Comparison of CMStalker and Coreclust: We compared
CMStalker against CORECLUST [33] on the liver-specific
dataset, which is the only one for which compatible data are
available. It turns out that both methods are characterized by
exactly the same nCC value, namely 0.56 [32].
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D. XIE benchmark

1) XIE dataset: The second benchmark is that constructed
by Xie et al. [56], which is composed of 22 genomic sequences
sampled from upstream regions of 22 randomly chosen genes
in the mouse, chicken and human genomes, and of 516
TFs from TRANSFAC. The 22 genomic sequences are of
same length (1000bps). For 20 sequences, binding loci for
transcription factors Oct4, Sox2 and FoxD3 have been inserted
within a region of at most 164bps, with inter-distances among
TFBS sampled from a Poisson distribution of expected value
10. The order of the TF is preserved in each of the 20
sequences. For two sequences no insertion has been done.
We downloaded the whole benchmark from the companion
site of [18], [46], which also included various other files: (1)
one file with the correct positions and composition of the
inserted modules (the answer file); (2) a file with a set of
516 TRANSFAC matrices corresponding to vertebrate TFs;
(3) four collections composed of 10 PWM files each. Any
file in the first collection stores 10 matrices, namely the
ones corresponding to the TF loci inserted in the genomic
sequences together with 7 “noisy” PWMs. The noisy matrices
have been sampled from the above mentioned set of 516
TRANSFAC matrices. The other collections are characterized
by an increasing amount of noisy matrices (17/20, 27/30, and
37/40, respectively).

2) Experimental set up: We compared CMStalker on this
dataset against the results reported in [18], [46], that have been
obtained by five different tools, namely the already mentioned
Cister, Cluster-Buster, ModuleSearcher, and COMPO, as well
as CPModule itself [18], [46].
Figure 5 shows the nucleotide level CC statistics for CM-
Stalker and the tools already evaluated in [18], [46] as a func-
tion of the number of PWMs given in input. CMStalker’s good
results can be better appreciated when considering the fact that
(differently from the other tools and, in particular, CPModule)
it did not use any prior knowledge of the module’s size (the
proximity constraint of [18], [46]). As for the COMPOSITE
benchmark, CMStalker simply used parameter relaxation in
order to detect both size and quorum of the prospective
combinatorial groups. We observe that CMStalker is roughly
equivalent to the best performing methods in the range from

16 to 216 matrices. Afterwards there is a natural decay as
the signal to noise ratio decreases. From this perspective, the
behavior of Compo seems quite odd, as pointed out also in
[46]. In the supplementary material we also report a zooming
of the figures in the range from 10 to 40 PWMs.

Fig. 5. Nucleotide level CC results on the XIE benchmark.

E. REDFLY benchmark

1) REDFLY dataset: The third benchmark contains a num-
ber of cis-regulatory regions which are provably functionally
active during the blastoderm development stage of Drosophila.
The benchmark is available as supplementary material of the
paper [22], which we will frequently refer for both the exper-
imental setting and the result comparisons. It is composed of
53 potentially relevant PWMs and of 33 datasets (collections
of sequences), with a number of sequences per dataset ranging
from a minimum of 4 to a maximum of 77 and summing to
a total of 719 sequences, for approximately 5.7M bps. Each
sequence of a given dataset includes a single CRM, whose
length is typically different from those of other sequences in
the same dataset. However, the experimental setting in [22]
requires that any CRM discovery software being evaluated
returns, for each sequence in a dataset, a single region of fixed
length. This value is computed as the average real CRM length
in that dataset and it is passed as a parameter to the prediction
algorithm. Such average values range from 442 bps to 1248
bps.

The average lengths of the regulatory regions of the RED-
FLY dataset are significantly greater than those of the com-
posite motifs typically detected by our software, and by most
tools designed for the detection of clusters of binding sites
considered in this paper. This feature makes it the less favor-
able to CMStalker (see also Section II). We made no attempt
to adapt CMStalker to this state of affairs since we wanted
to understand whether CMStalker “as is” can be suitably
employed for the detection of regulatory elements spanning
from few tens to a thousand bps. We ran CMStalker with the
same set of parameters already adopted in the previously de-
scribed experiments. However, to conform to the experimental
setting of [22], we set the final window size parameter, for a
given dataset, to the average CRM value for that dataset, by
enlarging (or shrinking) the actual output. To avoid incurring
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in very high computation times, the values of MAXGROUP
and MAXHITS parameters were set as described in Section
V-A.

In [22] he results obtained by three different tools on this
benchmark (the already mentioned Stubb, as well as D2Z-
set and CSam, described in the same paper [22]) are reported,
against which we compare CMStalker. The results obtained are
by no means definitive. CMStalker can be regarded as quite
“conservative” a motif discovery software; in many cases (30
over 33), according to its internal logic, CMStalker does not
gather sufficient evidence for reporting a cluster of sites as a
potential motif, and hence remains silent. In three cases the
search was instead successful and the performance competitive
against the other tools on the PPV metrics.

2) Experimental set up: We performed two sets of ex-
periments, varying the MAXHITS parameter (Section V-A).
In the first set, with MAXHITS=20 (and set all the other
parameters to default values, with the exception of window
size, for the reasons explained above), CMStalker returned
just one answer, for the mapping1.cardiac.mesoderm dataset.
We then set MAXHITS=308 and got two additional answers.
Table IV shows the results obtained and the corresponding
values reported in [22].

Sequences CRMs CRM length
Dataset Seqs Tot (bp) min max avg
D1 5 28,085 5 126 927 561
D2 16 92,723 16 220 1373 579
D3 16 87,140 16 105 1415 544

TABLE III
DROSOPHILA DATASETS FOR WHICH CMSTALKER DETECTS A CRM:
D1=MAPPING1.CARDIAC.MESODERM, D2=MAPPING1.ENDODERM,

D3=MAPPING1.MESODERM.

CMStalker Stubb D2Z-set CSam
D1 1.0(0.06) 0.22(0.08) 0.28(0.03) 0.19(0.12)
D2 0.39(0.12) 0.24(0.01) 0.12(0.31) 0.26(0.01)
D3 0.97(0.001) 0.21(0.02) 0.17(0.09) 0.13(0.22)

TABLE IV
PPV RESULTS FOR CMSTALKER AND OTHER TOOLS ON SOME

DROSOPHILA DATASETS (WITHIN PARENTHESIS THE EMPIRICAL
P-VALUE). FOR THE ACTUAL DATASET NAMES REFER TO TABLE III

Note that Table IV reports the values of the PPV statistics,
rather than Sensitivity, as in [22]. Actually, according to the
evaluation protocol of [22], the two measures coincide. In our
case, though, even when CMStalker reports some answers
for a given dataset, it does not claim a CRM for all the
sequences in that dataset. Hence sensitivity and PPV coincide
in our case only if they are computed with respect to the true
positive bps in the sequences for which CMStalker returned an
answers. This means that the true CMStalker sensitivity can be
much lower. However PPV seems a much better statistics for

8Allowing as many as 30 hits per sequence caused some runs (e.g., on the
mapping3.adult dataset) to last for more than one day.

the purpose of establishing the usefulness of CMStalker for
CMR discovery. The values of PPV, and the corresponding
P-values, reported in Figure IV for CMStalker have been
computed using the evaluation script available for download
as supplementary material of [22].

VI. DISCUSSION

In this paper we have presented CMStalker, a novel tool for
Composite Module detection whose algorithmic core is based
on purely combinatorial ideas. Using well-known benchmark
data, of quite different nature, our software proved to be
competitive against a number of state-of-the-art other tools.

We are aware that more comparisons are required, however,
we think that some interesting findings have emerged from this
work, all related to the power of simple motif combinations.
First of all, that the good results exhibited by CMStalker have
been obtained without using any sophisticated statistical filter-
ing criteria; the combination of “right” simple sites were often
strong enough to emerge from a huge pool of candidate motif
clusters. Secondly, that the conceptually simple CMStalker
architecture, based on a two-stage approach to composite motif
finding (i.e., first detect simple motifs, then combine them
to form clusters of prospective functional motifs) proved to
be competitive against other, more sophisticated approaches
(see also [13]). In the third place, that progressive lowering
the thresholds that defines in silico the DNA occupancy by a
transcription factor, is a winning strategy that can be automated
and thus be transparent to the user.

Giving the good results obtained, we are encouraged to
carry further activities on CMStalker, including the ones listed
below.

- Perform further comparisons, including other tools as
well as other experimental frameworks (e.g., those con-
sidered in [41] and [33]), not only with the goal of better
estimating CMStalker’s value, but also with the aim at
understanding its limitations, e.g., why it fails on input
specific datasets, and how to possibly overcome them.

- Perform experiments where the input to CMStalker is
produced by third-party motif finding tools. Clearly,
whether or not good results can be achieved here will
largely depend on the quality of the external tools perfor-
mance. However, our hope here is to exploit CMStalker’s
ability to filter out false positives to achieve at least good
PPVs.

- Improve the currently limited CMStalker’s ability to
predict whole regulatory regions, i.e., improving the
Sensitivity of the algorithm on “CRM discovery datasets”
while preventing a dramatic decrease of PPVs.
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