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Abstract 

Artificial life is largely concerned with systems that exhibit 
different emergent phenomena; yet, the identification of 
emergent structures is frequently a difficult challenge. In this 
paper we introduced a system to identify candidate emergent 
mesolevel dynamical structures in dynamical networks. This 
method is based on an extension of a measure introduced for 
detecting clusters in biological neural networks; its main 
novelty in comparison to previous application of similar 
measures is that we used it to consider truly dynamical 
networks, and not only fluctuations around stable asymptotic 
states. The identified structures are clusters of elements that 
behave in a coherent and coordinated way and that loosely 
interact with the remainder of the system. We have evidence 
that our approach is able to identify these “emerging things” 
in some artificial network models and in more complex data 
coming from catalytic reaction networks and biological gene 
regulatory systems (A.thaliana). We think that this system 
could suggest interesting new ways in dealing with artificial 
and biological systems. 

Introduction 

Artificial life is largely concerned with systems that exhibit 
different emergent phenomena, life itself being one of the 
most intriguing ones. Yet defining emergence is a 
controversial issue, since it is deeply related to the 
relationship between the observer and the observed system. 
We will not enter here this debate, but we rather want to stress 
an aspect of emergence that is often overlooked, i.e. its 
intermediate-level characteristics. 
 Most discussions of emergence, as well as its existing 
theories and models, take into account a two-level system, and 
describe the bottom-up features of the phenomenon. For 
example, take the well-known Benard-Marangoni hexagonal 
convection pattern (Haken H. 2004) that is generated when 
the heat flow exceeds a certain threshold: here the 
microscopic level is that of the water "particles" and the 
macroscopic one is that of the hexagonal convection cells (in 
this case, the hierarchy of levels is related to their 
characteristic dimension). There is indeed a further upper 

level, i.e. that of the apparatus where the phenomenon takes 
place; this uppermost level is necessary, and indeed it 
determines some major features of the phenomenon, as it can 
be seen e.g. by replacing the free surface with a metallic plate, 
thereby changing the pattern from hexagonal cells to 
cylindrical rolls. However the uppermost level is not affected 
by what happens at the lower levels and it therefore just 
provides the fixed boundary conditions that allow the 
establishment of the emergent patterns. 
 However, at a close look one finds that most emergent 
phenomena take place at levels that can be regraded as 
intermediate between pre-existing levels, that are in turn 
affected by the appearance of the intermediate emergent 
pattern. This topic is strictly related to the concept of 
emergence of hierarchies (Salthe, 1985) (Emmeche et al, 
1997). Here we focus on the so-called "sandwiched" emergent 
phenomena, which appear in several fields such as physics, 
biology and social science (Lane et al, 2009). The most 
striking case is likely to be that of the formation of organs and 
tissues in multicellular organisms. Multicellularity predates 
the formation of organs, so the microscopic and macroscopic 
levels, i.e. cells and organism, were already in place when 
organs appeared. However, one they were formed, both 
organisms and cells were modified. Other examples of 
sandwiched emergence include the formation of clouds in 
physics and that of political factions, within parties, in social 
science, but there are actually very many. Indeed, once the 
importance of mesolevel emergence has been appreciated, it 
becomes difficult to find truly two-level systems in the sense 
defined above. 
 While in some cases it may be simple to identify the 
emergent structures or patterns, this is not always the case. 
Take for example a network of nodes that lacks any explicit 
all-encompassing spatial regularity, like e.g. a model of a 
genetic regulatory network with random connections, or a 
random chemical reaction network. While in spatially regular 
systems the appearance of regular patterns (like in the Benard 
case) or of clusters of nodes may be easy to find, in random 
systems that is by far more difficult. 
 In real genetic networks a lot of effort has been devoted to 
identifying frequently occurring motifs, i.e. small connection 
patterns that are much more frequent that what might be 

ECAL - General Track

ECAL 2013 372

jfurbush
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-31709-2-ch054



expected if the network had been completely random; their 
high relative frequency can be regarded as a hint to the fact 
that they might have been selected by evolution due to the 
usefulness of the functions they perform. Indeed, the search 
for relevant connection patterns in complex networks is an 
important research topic. However, these approaches are 
mainly concerned with features that are directly related to the 
network topology, while here we want to look for structures 
and patterns that can be observed while looking at the 
dynamics of the system. 
 So, in order to escape from a merely topological view, we 
consider different subsets of the system, looking for those 
whose elements appear to be well coordinated among 
themselves and have a weaker interaction with the rest 
(Mesolevel Dynamical Structures, or MDS, in the following). 
For each subset of elements we will measure its so-called 
cluster index, a measure based on information theory that has 
been proposed by Tononi and Edelman (Tononi et al. 1998). 
After a suitable normalization procedure we rank the various 
subsets in order to identify those that are good candidates for 
the role of partially independent "organs" (note that they not 
necessarily exist in any network). 

The approach 

For the sake of definiteness, let us consider a system U, our 
"universe" that is a network of N elements that can change 
their state in discrete time, taking one of a finite number l of 
discrete values. The value of element i at time t+1, xi(t+1), 
will depend in a deterministic way upon the values of a fixed 
set of input elements at time t, possibly including the i-th 
(self-loops are not prohibited).   
 We will consider the systems’ behaviors after an adequate 
relaxation time, in order to observe its asymptotic states. 
Given this quasi-equilibrium hypothesis we can estimate the 
entropy of each element from a long series of states by taking 
its frequencies fv of observed values as proxies for 
probabilities, so: 
 

∑
=

−=
m

v

vvi ffH
1

log          [1] 

 
 where the sum is taken over all the possible values an 
element can take. Of course, the average entropy of the whole 
system is the average of Hi taken over all the elements. 
 In case of a fixed point attractor Hi=0 for every element 
since each node takes its value with frequency one. In order to 
apply entropy-based methods, Edelman and Tononi 
considered a system subject to gaussian noise around an 
equilibrium point. However nonlinear systems can carry 
several different attractors, each attractor revealing a 
particular way of functioning of the system itself: so the 
composition of all these asymptotic behaviors should help us 
in finding the parts of the system able to dynamically support 
them. Our "long data series" therefore will be composed by 
several repetitions of a single attractor, followed by 
repetitions of another one, etc. (ignoring the short transients 

between the attractors)1, the number of repetitions reflecting 
the nature of the system we are analyzing.  There are several 
different strategies to estimate these attractors’ weights: in 
case of noisy systems a possibility is that of using the 
persistence time of the systems in each of them (Villani and 
Serra, 2013), whereas deterministic systems might be 
analyzed by weighting attractors with their basins of 
attraction. Given the nature of the cases of this work in the 
following we opt here for this second choice. 
 Now let us look for interesting sets of nodes (clusters, from 
now on). A good cluster should be composed by nodes (i) that 
possess high integration among themselves and (ii) that are 
more loosely coupled to other nodes of the system. The 
measure we define, called the cluster index, provides a value 
that can be used to rank various candidate clusters (i.e., 
emergent intermediate-level sets of coordinated nodes). 

The cluster index 

Following Edelman and Tononi (Tononi et al. 1998), we will 
define the cluster index C(S) of a set S of k elements, as the 
ratio of a measure of their integration I(S) to a measure of the 
mutual information M(S;U-S) of that cluster with the rest of 
the system. 
 The integration is defined as follows: let H(S) be the 
entropy (computed as before) of the elements of S. This 
means that each state is a vector of k elements, and that the 
entropies are computed by counting the frequencies of the k-
dimensional vectors. Then: 
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 So I(S) measures the deviation from statistical 
independence of the k elements in S, by subtracting the 
entropy of the whole subset to the sum of the single-node 
entropies. The mutual information of S to the rest of the world 
U-S is also defined by: 
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 where, as usual,  H(A|B) is the conditional entropy and 
H(A,B) the joint entropy.   Finally, the cluster index C(S) is 
defined by: 
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 The cluster index vanishes if I=0, M#0, and is not defined 
whenever M=0. These cases, in which S is statistically 
independent from the rest of the system, can nevertheless be 
diagnosed in advance: the 0/0 form does not provide any 
information, whereas I(S)/0 form - with I(S)≠0 - points to 
statistical independence of S from the rest of the system, and 
calls for a separate analysis. 
                                                             
1 Note that – given the nature of the average computation – the particular 

order of the data vectors on the series do not alter the analysis; in addition 

the data series can be composed by states belonging to different attractors 
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 C(S) scales with the size of the subsystem, so a loosely 
connected subsystem may have a larger index than a more 
coherent, smaller one: to compare the indices of the various 
candidate clusters it is therefore necessary to normalize their 
cluster indexes, for example by comparing them with those of 
subsystems having same size, but belonging to a non-
clustered homogeneous system (a “null system”). 
 The definition of the “null system” is critical: it could be 
problem-specific, but we prefer a simple solution which is 
fairly general: given a series of discrete vectors, we compute 
the frequency of each symbol and generate a new random 
series where each symbol has a probability of appearing equal 
to that of the original series.  This random null hypothesis is 
easy to calculate, related to the original data and parameter-
free; moreover it satisfies the requirements set by Tononi of 
homogeneity and cluster-freeness. 
 The “null system” therefore provide us with a null 
hypothesis and allows us to calculate a set of normalization 
constants, one for each subsystem size. For each subsystem 
size, we compute average integration <Ih> and mutual 
information <Mh> (subscript h stands for “homogeneous”); 
we can then normalize the cluster index value of any 
subsystem S using the appropriate normalization constants 
dependent on the size of S: 
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 In order to compute a statistical significance index (Tc in 
the following) we apply this normalization to both the cluster 
indexes in the analyzed system and in the null system: 
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 where <C’h> and σ( C’h) are respectively the average and 
the standard deviation of the population of normalized cluster 
indices with the same size of S from the null system 
(Benedettini 2013). Finally we use Tc to rank the obtained 
clusters. 
 

Results 

The cluster index has been introduced by Tononi (Tononi et 
al. 1998) for quasi-static systems; in the previous section we 
have shown how it could be extended to nonlinear dynamical 
systems, and in the following we will show the result of the 
application of this ranking method to some relevant systems, 
including generic models of gene regulatory networks, models 
of sets of catalytic chemical reactions and models of specific 
regulatory networks (A.thaliana). The method draws our 
attention on the subsets of the analyzed system that are highly 
functionally correlated and that could represent possible 
candidates MDSs. In the end we will also comment on the 
fact that our method, although not yet fully developed, 
outperforms usual correlation techniques. 

Boolean networks 

The case study we are going to examine consists of three 
synchronous deterministic Boolean networks (BNs), described 
in Fig.1. BNs are an important framework frequently used to 
model genetic regulatory networks (Kauffman, 1993) 
(Kauffman, 1995), also applied to relevant biological data 
(Serra et al. 2004) (Shmulevich et al. 2005) (Villani et al. 
2007) and processes (Serra et al. 2010) (Villani et al. 2011). 
The aim of this case study is to check whether CI analysis is 
capable of recognizing special topological cases, such as 
causally (in)dependent subnetworks and oscillators, where the 
causal relationships are more than binary.  Note that given this 
“more than binary” nature in all the following cases, 
traditional analyses based on correlation between pairs of 
variables might fail.. For example the computation of Pearson 
correlation coefficients of the networks of this section  does 
not lead to identify related variables, given that only diagonal 
elements take non negligible values. 
 

          
                (a)                     (b)                            (c) 

     
(d)                                  (e) 

 

 
                                              (f) 

Figure 1 (a) independent Boolean networks (BN1); (b) interdependent 

networks (BN2); (c) a system composed by the merging of both the 

previous networks (BN3). Beside each boolean node there is the boolean 

function the node is realizing. The second part of the figure shows the 

matrixes illustrating the elements belonging to the clusters (white on 

figures) and the corresponding Tc values, for (d) BN1, (e) BN2 and (f) 

BN3 systems 

 
 CI analysis is able to correctly identify the two subnetworks 
of BN1 (first and second rows).  The analysis clusters together 
5 of 6 nodes of BN2: those already clustered in BN1, plus 
nodes 1 and 2 (which negates each other - figure 1b) and the 
node that compute the XOR of the signal coming from the 
two just mentioned groups. Indeed, all these nodes are needed 
in order to correctly reconstruct the BN2 series. The analysis 
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is able to identify all MDSs also when all the series are 
merged together (figure 1f, where the top two clusters 
correspond respectively to the 5 nodes already recognized in 
BN2 and to the whole BN2 system, while the third and fourth 
rows correspond to the independent subgraphs of BN1 - see 
(Villani et al., 2013) for details). Experiments performed 
using asynchronous update yielded essentially the same 
results with respect to both CI and correlation analyses. 
 We would like to point out that CI analysis does not require 
any knowledge about system topology or dynamics. This 
information is normally unavailable in real cases; on the other 
hand, our methodology just needs a data series. 

Perturbing a catalytic reactions system 

It is widely believed that the origin of life required the 
formation of sets of molecules able to collectively self-
replicate (Carletti et al., 2008) (Filisetti et al., 2010) (Ganti, 
2003) (Luisi et al., 2006) (Mansy et al., 2008) (Rasmussen et 
al., 2003) (Stano and Luisi, 2010) (Szostak et al., 2001), a 
phenomenon that may play an important role also in future 
bio-technological systems (Solè et al., 2007). There are many 
efforts to identify the dynamical cores of these systems, 
mainly based on static properties of the reaction networks they 
are forming (Farmer et al., 1986) (Hordijk et al., 2010) 
(Kauffman, 1986): in this work we present a first attempt 
toward a dynamical detection of these systems. 
We use a simple system (inspired by a model (Filisetti et al. 
2011a) (Filisetti et al. 2011b) (Filisetti et al. 2011c) (Farmer et 
al., 1986) originally due to Kauffmann (Kauffmann, 1993) 
(Kauffmann, 1995)) where there are two distinct reaction 
pathways, a linear reactions chain (CHAIN) and an 
autocatalytic set of molecular species (ACS) (see figure 2): 
both reactions pathways occur in an open well-stirred 
chemostat (CSTR) with a constant influx of feed molecules 
and a continuous outgoing flux of all the molecular species 
proportional to their concentration. The dynamics of the 
system is described adopting a deterministic approach 
whereby the reaction scheme is translated in a set of Ordinary 
Differential Equations (ODE) integrated by means a fourth-
order Runge-Kutta method (Young and Gregory, 1988). 
 The main entities of the model are molecular species 
(“polymers”) represented by linear strings of letters A and B, 
forming together a catalytic reactions system composed of 6 
distinct condensation reactions in which two species are glued 
to create a longer species. The reactions occur only in 
presence of a specific catalyst, since spontaneous reactions are 
assumed to occur too slowly to affect the system behavior. 
Accordingly, in the following the reaction scheme is 
presented: 
 

•  

•  

•  

•  

•  

•  
 

 According to the three molecular nature of the 
condensation reaction, reactions occur in 2 two steps: in the 
former the catalyst binds the first substrate forming a 
molecular complex, while in latter the molecular complex 
binds the second substrate releasing the product and the 
catalyst. The “food set” of the linear chain 
(BABABBBABBBABABAAB) is formed by the 
species ABB, BBA, BBB, ABA, BAA, B, whereas the food 
set of and the autocatalytic cycle (AABBA 
AAAAAAABAABBA) is formed by the species BA, 
AAB, AAA, A, AB, AA. Besides, an independent molecular 
species BB not involved in any reactions has been introduced 
as control species (figure 2).  
 The asymptotic behavior of this kind of systems is a single 
fixed point (Vasas et al., 2012), due to the system feedback 
structure.  In order to apply our analysis we need to observe 
the feedbacks in action, therefore we perturb the concentration 
of some molecules in order to trigger a response in the 
concentration of (some) other species. So we temporarily set 
to zero the concentration of some species (in the example of 
fig.2 of the species ABBBA, BBBABA, AABBA, AAAA, 
AAAB) after the system reached its stationary state2: in order 
to analyze the system response to perturbations we use a 3-
level coding, where for each species the digit ‘0’-‘1’-‘2’ stand 
respectively for “concentration decreasing”, “no change” and 
“concentration increasing”3. 

 

Figure 2 The chemical system under analysis. Circular nodes depict 

chemical species, the blue ones stand for those injected on the CSTR 

(food species) and the green ones represent the more complex species 

built by specific concatenations of the food species, see reaction scheme 

in the text. Diamond shapes represent reactions where incoming arrows 

go from substrates to reactions and outgoing arrows go from reactions to 

products. Dashed lines indicate the catalytic role of a particular molecular 

species within the specific reaction context. The kinetic constants of all 

present reactions have the same value kdir=0.0025 s-1mol-1); the incoming 

concentration of each food species is 1.0 mol, whereas each second the 

2% of the CSTR volume is renewed 

                                                             
2 In this example the analyzed data series starts from second 200, in order 

to avoid the initial transient 
3 In such a way we can abstract from the different  concentration present 

on the system, a species being constant if its concentration change from 

previous time instant is below the threshold of 0.1% 
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 The results clearly indicate the presence of two distinct 
systems of size 3 (the second and third rows in fig.4a) that 
correspond to CHAIN and ACS. Note that the leave of 
CHAIN (BAAB) is not strongly affected by the zeroing of 
ABBBA species (because the perturbation of this species, root 
of the linear chain, affects only in a limited manner the 
following species BBBABA, whose change in turn even 
lesser affects the concentration of species BAAB…): this 
attenuation process induces a dynamical hierarchy on CHAIN 
system, which allows the finer subdivision highlighted by the 
first row of fig.4a. This phenomenon is absent on ACS, a 
more homogeneous system where no roots are present. 

 

 

Figure 3 The chemical system trajectory, including the performed 

perturbations (only products are analyzed) 

 

 
(a) 

 
 (b) 

Figure 4 (a) The masks resulting from the chemical system analysis and 

(b) their corresponding Tc values. Note that the three masks whose Tc 

values outperform the other ones correctly identify the system’s 

components (see text for details) 

Arabidopsis thaliana 

It is possible to expand the analysis to BN derived from 
biological data of specific living beings. In this work we take 
advantage from the available data of the gene regulatory 
network shaping the developmental process of Arabidopsis 
thaliana: although the whole network is largely unknown, a 
certain subsystem has been identified as responsible for the 
floral organ specification. We will not enter here a discussion 
about the merits and limits of this simplified model, but we 
will take it "for granted" and we will apply our method to test 
whether it can discover significant MDSs. 
 The network is modeled by means of a BN described in 
(Chaos et al., 2006), which has 15 nodes and 10 different 
attractors (all fixed points): we therefore build a data series 
containing a number of repetitions of these attractors in 
proportion to their basins of attraction. In doing so it is 
possible to note that genes LUG and CLF are constantly active 
in all the attractors: this particular feature introduces a 
particular “noise” on CI analysis, by adding spurious cluster 
among the first positions. Indeed, it is possible to analytically 
demonstrate that the addition of constant nodes in clusters 
with high Tc leads again to other clusters with high Tc values: 
these additions nevertheless do not have particular biological 
meanings (the added elements do not introduce any variation), 
so the corresponding clusters can be memorized as “not 
significant”. 
The analysis clearly groups genes UFO and AP3, present 
alone on the best significant cluster and in all the following 20 
most significant clusters. Note that the second significant 
cluster includes gene WUS: indeed, for biologists (Lenhard et 
al., 2001) (Lohman and others 2001) UFO and WUS are key 
inputs for determining the specific time and site where the 
combinations of gene activities considered in the 
developmental process are established, whereas AP3 is an 
important transcription factor.  So, our analysis perceives the 
combination of a “sensor” (UFO) and of an influential 
“signaler” (AP3) as a single powerful dynamical engine, 
whose action can be tuned by WUS gene, demonstrating that 
it could highlight biologically interesting functional 
relationships. 
 

 

Figure 5 Floral network of A. thaliana (from (Chaos et al., 2006)) 
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Figure 6 Matrix illustrating the elements of the clusters (white in figure) 

identified by our analysis and their corresponding Tc values. Genes LUG 

and CLF are always constant along all the attractors and therefore their 

insertion in “active” MDSs can be excluded a priori (it is possible to 

analytically demonstrate that the addition of constant nodes in already 

existing clusters leads to cluster with high Tc values – but these additions 

do not seem have particular biological meanings) 

Conclusions 

In this paper we introduced a system to identify candidate 
emergent mesolevel dynamical structures in dynamical 
networks. The main novelty of the present work, in 
comparison to previous application of the cluster index and of 
similar measures (Tononi et al. 1998) is that we used it to 
consider truly dynamical networks, and not only fluctuations 
around stable asymptotic states. 
 Future works will consider the application of the method to 
other important natural and artificial networks, an improved 
understanding of its working and the use of entropies taken at 
different times. 
 As examples of application we used time series of simple 
artificial systems and more complex data coming from 
catalytic reaction networks and biological gene regulatory 
systems (A.thaliana). The analysis performed by our system 
was able to identify correctly the MDSs, and we think it could 
suggest interesting new ways in dealing with artificial and 
biological systems. 
Future work will consider the application of the method to 
other important natural and artificial networks, with the aim 
of deepen our understanding of its working principles and 
assessing its analysis power. In addition, we also plan to 
extend the definition of cluster index so as to take into 
account time relationships, for example by using of entropies 
taken at different times. 
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