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Abstract 

Low-frequency vibrations of Single-Walled Carbon Nanotubes with various boundary conditions 

are considered in the framework of the Sanders-Koiter thin shell theory. Two methods of analysis 

are proposed. The first approach is based on the Rayleigh-Ritz method, a double series expansion in 

terms of Chebyshev polynomials and harmonic functions is considered for the displacement fields; 

free and clamped edges are analysed. This approach is partially numerical. The second approach is 

based on the same thin shell theory, but the goal is to obtain an analytical solution useful for future 

developments in nonlinear fields; the Sanders-Koiter equations are strongly simplified neglecting 

in-plane circumferential normal strains and tangential shear strains. The model is fully validated by 

means of comparisons with experiments, molecular dynamics data and finite element analyses 

obtained from the literature. Several types of nanotubes are considered in detail by varying aspect 

ratio, chirality and boundary conditions. The analyses are carried out for a wide range of frequency 

spectrum. Strength and weakness of the proposed approaches are shown; in particular, the model 

shows great accuracy even though it requires minimal computational effort. 
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1. Introduction 

Carbon Nanotubes were discovered in 1991 by Iijima [1], who first analysed the synthesis of 

molecular carbon structures in the form of fullerenes and then reported the preparation of a new 

type of finite carbon structure consisting of needle-like tubes, the carbon nanotubes, described as 

helical microtubules of graphitic carbon. 

Carbon Nanotubes (CNTs) are used as ultrahigh frequency nanomechanical resonators in a large 

number of nanoelectromechanical devices such as sensors, oscillators, charge detectors and field 

emission devices. The reduction of the size and the increment of the stiffness of a resonator magnify 

its resonant frequencies and reduce its energy consumption, improving its sensitivity.  

The modal analysis of carbon nanotubes is important because it allows to obtain the resonant 

frequencies and mode shapes, which influence the mechanical and electronic properties of the 

nanotube resonators. 

A large number of experiments and atomistic simulations were conducted both on single-walled 

(SWNTs) and multi-walled carbon nanotubes (MWNTs). 

Rao et al. [2] studied the vibrations of SWNTs by using Raman scattering experimental techniques 

with laser excitation wavelengths in the range of the nanometers. They observed numerous Raman 

peaks, which correspond to vibrational modes of the nanotubes. 

Bandow et al. [3] analysed the effect of the temperature growth on the diameter distribution and 

chirality of SWNTs by comparing different experimental techniques, such as electron microscopy, 

X-ray diffraction and Raman spectroscopy. They studied the effect of the catalysts on the tube yield 

and the evolution of the tube distribution vs. the environmental temperature. 

Jorio et al. [4] studied the vibrations of SWNTs by resonant confocal micro-Raman spectroscopy. 

They developed a method to assign univocally the carbon nanotube chirality by measuring one 

radial breathing mode frequency and applying the theory of resonant transitions. 

Because of their nanoscale size, it is very difficult to investigate the mechanical properties of the 

nanotubes using experimental techniques, which require the use of high resolution transmission 

electron microscopes and do not allow to separate easily the natural frequencies of the different 

vibration modes within the frequency spectrum. On the other hand, it was found that molecular 

dynamics simulations (MD) and finite element analyses (FE) provide good predictions of the 

mechanical behaviour of CNTs under external forces, with results close to the experiments. 

Gupta et al. [5] analysed the free vibrations of zigzag SWNTs using molecular mechanics (MM) 

simulations with the MM3 potential, taking into account the effect of transverse inertia forces. They 

computed natural frequencies of inextensional Rayleigh-Love modes and radial breathing modes by 

considering different aspect ratios and chiralities. 
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Cheng et al. [6] investigated the radial breathing mode frequencies (RBM) and mode shapes of 

carbon nanotubes using a modified molecular structural mechanics model (MSM). They considered 

CNTs with different geometries and configurations, taking into account also the effect of the 

temperature. 

Gupta et al. [7] simulated the mechanical behaviour of SWNTs with free edges by using the MM3 

potential (MD model). They considered the effect of the chirality and the geometry on the natural 

frequencies of the longitudinal, torsional and inextensional modes of vibration of the nanotubes. 

Duan et al. [8] studied the free vibrations of carbon nanotubes by MD simulations considering 

clamped-free and free-free boundary conditions, with different aspect ratios and mode shapes. They 

introduced the concept of nonlocal scaling effect parameter. 

Sakhaee-Pour et al. [9] performed a vibration analysis of SWNTs using an FE method based on 

beam elements. The vibrational behaviour of clamped-clamped and clamped-free carbon nanotubes 

with different aspect ratios was modelled by using three-dimensional elastic beams and point 

masses, considering covalent bonds between the carbon atoms in the hexagonal lattice of the atomic 

structure. 

Arghavan and Singh [10] carried out a numerical study on the free and forced vibrations of SWNTs 

by considering the standard FE method (frame model). They analysed different chiralities for 

clamped-clamped and clamped-free boundary conditions, obtaining natural frequencies and 

corresponding mode shapes, and reported time histories and spectra of the axial, bending and 

torsional modes of vibration. 

However, it has been demonstrated that MD simulations and FE analyses are computationally 

inefficient, especially when dealing with multi-walled CNTs incorporating a large number of atoms; 

for the same reason, such models are not well suited for including nonlinear effects. Therefore, 

more efficient analytical and numerical methods have been recently developed in order to analyse 

classes of CNTs in a more general and efficient way; such methods are generally based on 

continuous models for the nanotube and allow a strong reduction of the number of degrees of 

freedom. 

Notwithstanding their small size and a discrete nature, CNTs were found to behave similarly to thin 

walled continua having both membrane and bending stiffness; therefore, it became evident that the 

equivalent continuous models could represent a very efficient way for the analysis and prediction of 

the carbon nanotubes behaviour. 

Odegard et al. [11] proposed an equivalent continuous model of nano-structured materials in which 

a representative volume element of graphene chemical structure was substituted with an equivalent 

continuous cylinder; they determined the effective thickness and bending rigidity of graphene. 
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Lu et al. [12] applied nonlocal Euler and Timoshenko beam models in order to investigate the 

vibration properties of single-walled and multi-walled CNTs. They derived the equations of motion 

for the different nonlocal beam models and analysed the influence of nonlocal effects on the wave 

properties, i.e., natural frequencies and phase velocities. 

Yang et al. [13] developed an efficient multiscale model for the CNTs by assuming the molecular 

structure equivalent to a solid cylinder. They analysed the effect of the size on the effective elastic 

stiffness of CNT/polymer nano-composites with interfacial imperfections. 

Kiani [14] developed a meshless approach for the analysis of the free transverse vibrations of a 

single-walled carbon nanotube embedded in an elastic matrix. Arbitrary boundary conditions were 

considered. The discrete equations of motion were established in the context of nonlocal continuum 

mechanics of Eringen, using the Hamilton’s principle and an efficient meshless method. The 

nonlocal effect was taken into account. In Refs. [15-16] the same author applied Rayleigh, 

Timoshenko and higher-order nonlocal beam theories to study the vibration characteristics of 

double-walled carbon nanotubes under a moving nanoparticle. The effects of slenderness ratio and 

small scale parameter were investigated for different boundary conditions. Theoretical formulations 

were reported, a parametric study was developed. Ref. [17] analysed the free transverse vibrations 

of a double-walled carbon nanotube embedded in an elastic foundation subjected to an initial axial 

load. Rayleigh, Timoshenko and higher-order nonlocal beam theories were used. The influence of 

the small-scale parameter, initial axial force, lateral and rotational stiffness of the surrounding 

matrix on the flexural frequencies was examined for different boundary conditions. The same 

author [18] analyzed the vibrational behavior of simply supported inclined single-walled carbon 

nanotubes conveying viscous fluids flow using the nonlocal Rayleigh beam model. The equations 

of motion were obtained in the context of nonlocal elasticity theory of Eringen. The effects of the 

small-scale parameter, inclination angle, speed and density of the fluid flow were considered. 

Wang and Hu [19] studied the flexural wave propagation in a SWNT comparing the results of the 

traditional Timoshenko beam theory and the nonlocal Timoshenko beam theory with the molecular 

dynamics simulations based on the Tersoff-Brenner potential. They found that the microstructure of 

a nanotube has a significant influence on the dispersion of flexural waves only for high frequencies. 

Fazelzadeh and Ghavanloo [20] developed a nonlocal anisotropic elastic shell model to study the 

effect of small scale on the vibrations of SWNTs with arbitrary chirality. They found that the effect 

of nonlocal parameters on the frequency is significant only for the SWNTs with low aspect ratios 

and small diameters. 

In particular, it was found that the continuous shell model can predict the static buckling and free 

vibrations behaviours obtained with the atomistic molecular-dynamics simulations: the analogies 
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between the elastic shell model and the CNTs structure led to an extensive application of the shell 

model for the CNTs structural analysis. 

Ru [21] studied the buckling effect of a double-walled carbon nanotube embedded in an elastic 

medium under axial compression by considering an elastic double-shell model. He applied the 

Donnell shallow shell theory and modelled the interaction between the inner and outer nanotubes by 

considering the Van der Waals forces. 

Eisenberger et al. [22] analysed the effect of the Van der Waals interactions on the vibration 

characteristics of multi-walled carbon nanotubes. An elastic multiple thin shell model was used. 

Based on the simplified Donnell shell equations, the natural frequencies and mode shapes of 

MWNTs with various radii and number of tubes were obtained. 

Elishakoff and Pentaras [23] evaluated the fundamental natural frequencies of double-walled carbon 

nanotubes under various boundary conditions with the Donnell shallow shell theory. They applied 

the Bubnov-Galerkin and Petrov-Galerkin approximate methods to derive explicit expressions for 

the natural frequencies. 

Silvestre et al. [24] studied the buckling behaviour of SWNTs with small aspect ratios comparing 

the Donnell shallow shell and Sanders-Koiter thin shell theories. They demonstrated the inability of 

the Donnell shallow shell theory and the validity of the Sanders-Koiter shell theory in reproducing 

buckling strains and mode shapes of axially compressed CNTs very close to the MD ones. Simply 

supported and clamped-clamped boundary conditions were considered. 

Peng et al. [25] quantified the error in approximating SWCNTs as continuous thin shells via an 

atomistic-based finite-deformation shell theory. They found that SWCNTs with small diameters 

cannot be represented by a conventional elastic thin shell because their constitutive relation involves 

the coupling between tension and curvature and between bending and strain due to non-local effects. 

In order to analyse the discrete molecular carbon nanotubes as continuum thin shells, different 

equivalent mechanical and geometric parameters have been proposed. 

Huang et al. [26] determined the equivalent values of the wall thickness and Young’s modulus of 

SWNTs by considering the expressions of the tension and bending rigidities obtained directly from 

the interatomic potential of graphene. 

Yao and Lordi [27] used MD simulations in order to calculate the equivalent Young’s modulus of 

Single-Walled Carbon Nanotubes with different geometries from their thermal vibration frequencies 

and torsional strains. 

Yakobson et al. [28] studied the instabilities beyond linear response of carbon nanotubes subjected 

to large deformations. With properly chosen tubule equivalent Poisson’s ratio, Young’s modulus 
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and wall thickness, they determined the critical buckling values of the carbon nanotube under axial, 

bending and torsional strains. 

Jin and Yuan [29] obtained the equivalent value of the elastic modulus of Single-Walled Carbon 

Nanotubes subjected to small-strain deformation by using Molecular Dynamics simulations with 

both energy and force approaches. 

Vodenitcharova and Zhang [30] investigated the equivalent wall thickness and Young’s modulus of 

a SWNT by considering the deformation of a bundle of Single-Walled Carbon Nanotubes subjected 

to an external hydrostatic pressure and using the continuum mechanics theory. 

Different elastic shell theories have been applied in order to study the mechanical behaviour of 

Single-Walled Carbon Nanotubes as continuum structures. 

Liew and Wang [31] investigated the wave propagation in both SWNTs and DWNTs by comparing 

two different elastic shell theories: the Love’s thin cylindrical shell theory and the Cooper-Naghdi 

thick cylindrical shell theory, where in the second theory the shear and inertia effects are taken into 

account in order to provide more accurate wave dispersions for the higher vibration modes. 

Carrera and Brischetto [32] compared two classical two-dimensional models, such as Classical 

Lamination Theory (CLT) and First order Shear Deformation Theory (FSDT), and a refined mixed 

model based on Carrera Unified Formulation (CUF) for the analysis of nano-reinforced structures. 

Several types of nanocomposites were used in the static analysis of the circular cylindrical shells, 

their elastic properties have been obtained from an accurate literature review. 

Silvestre [33] evaluated the accuracy of different shell models for the torsional buckling of SWNTs. 

He found that the Donnell shallow shell model leads to incorrect values of the critical angle of twist 

per unit length compared with the MD results. Conversely, he proved that the Sanders shell model 

leads to correct results of the critical angle of twist. 

Wang et al. [34] examined the applicability and limitations of different simplified models of elastic 

cylindrical shells for general cases of static buckling and free vibrations of carbon nanotubes. They 

found that the simplified Flugge model, which retains the mathematical simplicity of the Donnell 

model, is in better agreement with the Flugge equations with respect to the Donnell theory. 

Cong [35] determined the critical buckling strains of SWNTs subjected to axial compression by 

using different cylindrical shell theories. Considering MD simulations as benchmarks, he found that 

the first-order shear deformation thick shell theory gives a closer prediction of the critical buckling 

strains when compared with the Donnell and the Sanders elastic thin shell theories. 

In the pertinent literature, the SWNTs are frequently modelled as isotropic elastic thin shells. 

On the other hand, Ghavanloo and Fazelzadeh [36] studied the linear vibrations of the SWNTs by 

considering an anisotropic model based on the Flugge elastic shell theory including the chirality 
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effect. They analysed the effect of the tube chirality on the natural frequencies of the CNTs and the 

influence of externally applied mid-face axial force and torque on the frequencies of chiral SWNTs. 

Chang [37] developed a molecular mechanics based anisotropic elastic shell model for studying the 

mechanical behaviour of SWNTs. He analysed the effects of the size and chirality on: the coupling 

between axial, circumferential and torsional deformations; the radial breathing mode frequency; the 

longitudinal and torsional wave propagation speeds. 

Readers interested in deepening the knowledge on shells behaviour are suggested to refer to the 

works of Leissa [38] and Yamaki [39]. The first one is mainly concerned with the linear dynamics 

of shells exhibiting different topologies, materials and boundary conditions. The second one is 

focused on buckling and post-buckling of the shells in linear and nonlinear fields. In Refs. [38,39] 

one can find the most important shell theories, such as Donnell, Reissner, Flugge, Sanders-Koiter, 

as well as solution methods, numerical and experimental results. In Ref. [40] the nonlinear 

vibrations and stability of circular cylindrical shells are analysed. Refs. [41-44] are strictly related to 

the present work. In Refs. [41,42] a method based on the nonlinear Sanders-Koiter theory and a 

displacement expansion based on Chebyshev polynomials and harmonic functions was presented; 

moreover, in Ref. [43] the same method was applied to Functionally Graded shells and extended to 

several types of boundary conditions, e.g., free-free, which are of great interest for the present 

study. In Ref. [44] a  reduced shell theory was proposed, the expression of the elastic strain energy 

neglects the circumferential and tangential shear deformations; this model is the basis for the 

reduced version of the Sanders-Koiter theory proposed in the present work. 

In the present paper, we analyse the low-frequency linear vibrations of SWNTs by using two shell 

models. Applicability and limitations of these continuous models are investigated in detail. 

The first approach is semi-analytical and it is based on the Rayleigh-Ritz numerical procedure, we 

call it shortly “numerical approach”; the Sanders-Koiter shell theory is considered in order to obtain 

the expressions of the elastic strain and kinetic energy. The nanotube deformation is described in 

terms of longitudinal, circumferential and radial displacement fields, which are expanded by means 

of a double mixed series based on Chebyshev polynomials for the longitudinal variable and 

harmonic functions for the circumferential variable. The Rayleigh-Ritz method is then applied to 

obtain numerically approximate natural frequencies and mode shapes. 

The second approach consists of an analytical model based on a reduced version of the Sanders-

Koiter shell theory, obtained by assuming small ring and tangential shear deformations. These 

assumptions allow to condense both the longitudinal and the circumferential displacement fields. A 

fourth-order partial differential equation for the radial displacement field is derived. Eigenfunctions 
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are formally obtained analytically, then the numerical solution of the dispersion equation gives the 

natural frequencies and the corresponding normal modes.  

In order to validate the present study, the natural frequencies of the carbon nanotube predicted by 

the present numerical model are compared with data available in literature: experiments, molecular 

dynamics simulations and finite element analyses. A comparison between the results of the 

numerical and analytical approach is carried out in order to check the accuracy of the last one. It is 

worthwhile to stress that the analytical model allows to obtain results with very low computational 

effort.
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2. Applicability and limitations of continuous thin shell models for Carbon Nanotubes 

In the study of the mechanical behaviour of CNTs by means of elastic thin shell models, three 

different problems must be taken into account. 

The first issue concerns the definition of the equivalent mechanical and geometric parameters of the 

shell model; the nanotube can be considered as a graphene sheet rolled into a seamless tube; its 

behaviour can be modelled through a thin cylindrical shell theory, where the equivalent values of 

Young’s modulus E, Poisson’s ratio ν and wall thickness h must be properly set. 

The second issue is related to the particular elastic shell theory to be applied for the computation of 

the elastic strain energy of the carbon nanotube: the results obtained using different shell theories 

(Flugge, Donnell, Sanders-Koiter, first-order shear deformation) should be compared with available 

MD simulations and experimental observations. 

The third issue concerns the methods of solution of the linear or nonlinear partial differential 

equations that govern the shell mechanics; such methods must be accurate but also as simple as 

possible and computationally efficient. Indeed, shell theories are used to replace MD models, which 

are the most coherent with the nanotube structure, but they are computationally inefficient; 

therefore, shell theories and solution methods must exhibit higher efficiency and, possibly, they 

should allow analytic or semi-analytic solutions. 

The literature deeply analysed the first two issues, it appears that shell models based on refined 

theories like Donnell-Mushtari or Sanders-Koiter are quite accurate using equivalent parameters. 

Regarding the solution methods some aspects are open in the literature: i) often only simply 

supported boundary conditions are considered, as they allow simple analytical-numerical 

treatments; ii) several approaches are not suitable for extension to nonlinear field, which is the 

future step for understanding complex CNT behaviours. 

 

2.1. Equivalent parameters 

Since the elastic properties of a two-dimensional hexagonal structure are isotropic, the graphene 

sheet rolled into a seamless tube can be approximated as a shell by using three different elastic 

parameters, i.e., tensile rigidity C, bending rigidity D and Poisson’s ratio ν [26]. 

Experimental observations have shown that CNTs have effective Young’s modulus E0 = 1.0 ÷ 2.0 

TPa, Poisson’s ratio ν0 = 0.12 ÷ 0.28 and wall thickness h0 = 0.10 ÷ 0.15 nm, even if it is ambiguous 

to define the thickness of a single layer of atoms, as it is pointed out in the modelling proposed in 

Ref. [27]. 

The parameters C and D were identified by comparisons with MD simulations of the CNTs energy, 

in Ref. [28] the following parameters are reported: C = 59 eV / atom = 360 J / m
2
 and D = 0.85 eV 
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= 1.362 × 10
-19

 J, while the equivalent Poisson’s ratio ν = 0.19 was extracted from a reduction of the 

diameter of a tube stretched in simulations at small strains. 

It should be pointed out that effective parameters are referred to the equivalent continuous models 

of the bar/beam, i.e., models that consider the full cross section area of the tube. 

In the modelling of a SWNT as a continuum elastic thin shell, the equivalent Young’s modulus E 

and wall thickness h can be determined by using the standard relations of the tensile rigidity C and 

bending rigidity D from the classical shell theory, in the following form [28] 

 

C Eh                               

3

212(1 )

Eh
D





 (1)  

 

Such an approach gives an equivalent thickness h = 0.066 nm and Young’s modulus E = 5.5 TPa. 

It is important to point out that the equivalent wall thickness h = 0.066 nm is much smaller than the 

graphite interlayer spacing h = 0.340 nm: when this representative wall thickness (planar spacing of 

graphite) is considered together with a representative Young’s modulus equal to E = 1.06 TPa (bulk 

stiffness of graphite) in the standard relations of the classical shell theory, the tensile rigidity C is 

similar to the MD results, while the bending rigidity D is much greater than the one obtained from 

atomistic simulations; therefore, the results obtained with the representative parameters are different 

from those obtained by using MD simulations [30]. This paradox justifies the use of the equivalent 

shell parameters previously identified for C and D. 

In the present work, the equivalent parameters E = 5.5 TPa, ν = 0.19, h = 0.066 nm are considered 

in order to model the discrete SWTN using an equivalent continuum elastic thin shell theory, with a 

surface density of graphite σ = 7.718 × 10
-7

 kg/m
2
 and a mass density ρ = 11700 kg/m

3
 as calculated 

by the relation ρ = σ / h, with h = 0.066 nm. Note that the equivalent Young’s modulus is higher 

than the effective one; indeed, it must be considered that in the shell model the cross section area 

depends on the radius and the shell thickness. 

It is worthwhile to stress that the aforementioned elastic parameters E, ν, ρ, h have been found 

suitable for equivalent thin shell models. If one simulates the nanotube by using e.g. a beam frame, 

then different equivalent parameters must be considered. 

 

2.2. Elastic shell theories 

Different elastic shell theories have been applied in the past in order to study the mechanical 

behaviour of SWNTs as continuum systems. 
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Elastic thin shell theories, such as Donnell-Mushtari, Donnell shallow shell and Sanders-Koiter, are 

based on the following assumptions, i.e., the Love’s “first approximation” [38]: 1) the thickness of 

the shell is small compared with the radius and the shell is sufficiently thin, i.e., h / R < 0.05; 2) the 

strains and the displacements are sufficiently small so that the quantities of the second and higher-

order magnitude in the strain-displacement relations may be neglected in comparison with the first-

order terms; 3) the transverse normal stress is small compared with the other normal stress 

components and may be neglected; 4) the normal to the undeformed middle surface remains straight 

and normal to the deformed middle surface and it suffers no extension; 5) the rotary inertia and 

transverse shear deformation effects may be neglected. 

Donnell shallow shell equations are widely used in the literature both in nano and in macro scales; 

in any case the limitations of this theory must be carefully considered, the main simplification is the 

static condensation of the in-plane inertia, which leads to severe inaccuracies for modes having a 

number of nodal diameters between 1 and 4 (non-breathing modes); other limitations regard the 

kinematic description of the strain-displacement relationships, see Ref. [38] for deepen the topic 

and [33] for a specific application to CNTs. 

Ref. [34] reports interesting comparisons between Donnell, Flugge and simplified Flugge theories 

regarding the static buckling under axial compression and radial pressure of CNTs; additionally, in 

this paper an extremely simplified version of the Flugge equations, specialized for radial breathing 

modes only, was presented. 

In Ref. [35] a higher-order shear deformation model, based on the Reddy theory, was used in order 

to improve the results of the thin shell theories in the analysis of CNTs. 

Carbon Nanotubes are often modelled as isotropic elastic cylindrical shells. The anisotropies due to 

the intrinsic discrete nature of CNTs can be neglected because they give a marginal contribution. 

In this work, SWNTs are modelled as isotropic elastic thin shells [41]; two independent mechanical 

properties, i.e., elastic modulus and Poisson’s ratio, are considered. The Sanders-Koiter shell theory 

is applied to study the vibrations of SWNTs considering the most important types of boundary 

conditions. 

Considering the plane stress approximation (σz = 0), the stresses (σx, σθ, τxθ) are related to the strains 

(εx, εθ, γxθ) by the following relationships [41] 

 

2
( )

1
x x

E
  


 


 

2
( )

1
x

E
   


 


 

2(1 )
x x

E
  





 (2)  

 

where E is the Young’s modulus and ν is the Poisson’s ratio. 
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A very important issue concerns the inclusion of the size effects into the elastic shell theory used to 

model SWNTs as continuum systems. Nanostructures can behave differently from macrostructures 

due to the presence of significant size effects that are not present at a macro scale, i.e., surface 

stresses, strain gradients and non-locality [14-18]. Since the non-local and gradient effects are 

essential for very high natural frequencies [12,19] and low aspect ratios and diameters [20,25], then 

these size effects are neglected in the present paper, which is focused on low-frequency vibrations 

of SWNTs with large aspect ratios and diameters. About the presence of surface effects, it was 

found that they arise only in the nanocomposites; conversely, they are not present in the isolated 

CNTs [13], studied in this paper, which, on the other hand, can be applied in a very large number of 

nanoscale devices. 
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3. Sanders-Koiter shell theory (numerical solution) 

First of all, it must be pointed out that in the present theory the size-effects are not considered; this 

simplification gives some limitations to the present model in terms of type of nanotube and dynamic 

conditions. The small scale effect has a significant influence on the dispersion of the flexural waves 

of SWNTs only for high frequencies [12]. Besides, the effect of nonlocal parameter on the natural 

frequency is significant only for the SWNTs with low aspect ratio and small diameter [20]. 

Therefore, in order to make valid the assumptions of the present theory, the following two 

limitations have to be considered: the low part of the frequency spectrum can be analysed [19], 

carbon nanotubes with high aspect ratio and large diameter can be studied [25]. 

In Figure 1, a circular cylindrical shell having radius R, length L and thickness h is represented; a 

cylindrical coordinate system (O; x, θ, z) is considered in order to take advantage from the axial 

symmetry of the structure, the origin O of the reference system is located at the centre of one end of 

the cylindrical shell. In Figure 1, three displacement fields are represented: longitudinal u (x, θ, t), 

circumferential v (x, θ, t) and radial w (x, θ, t); the radial displacement field w is considered positive 

outward and (x, θ) are the longitudinal and angular coordinates of an arbitrary point on the middle 

surface of the shell; z is the radial coordinate along the thickness h; t is the time. 

 

3.1. Strain-displacement relationships 

It should be pointed out that, due to the nanoscale, CNTs present huge natural frequencies (THz) 

and infinitesimal dimensions; this can induce numerical troubles to numerical algorithms if the 

governing equations are not transformed into a nondimensional form. 

Here, the three displacement fields (u, v, w) are nondimensionalized by means of the radius R of the 

carbon nanotube 

 

u Ru  v Rv  w Rw  (3)  

 

where ( , , u v w) are the nondimensional displacement fields. 

In the Sanders-Koiter elastic thin shell theory, the transverse shear strains (γxz, γθz) are neglected 

(Kirchhoff-Love’s kinematic hypothesis). The tangential normal strains (εx, εθ) and the tangential 

shear strain γxθ at an arbitrary radius on the shell thickness are related to the middle surface strains 

(εx,0, εθ,0, γxθ,0) and to the changes in curvature and torsion of the middle surface of the shell (kx, kθ, 

kxθ) by the relationships [38] 

 

,0x x xzk    
,0 zk      

,0x x xzk      (4)  
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where z is the distance of the arbitrary point on the thickness from the middle surface of the shell, 

according to the condition (−h / 2 ≤ z ≤ h / 2), as shown in Figure 1. 

The middle surface strains (εx,0, εθ,0, γxθ,0) are nondimensional parameters. The changes in curvature 

and torsion of the middle surface of the shell (kx, kθ, kxθ) are dimensional parameters, and they must 

be written in nondimensional form; this is achieved by considering the radius R. The middle surface 

strains and nondimensional changes in curvature and torsion can be written as follows [38] 

 

,0 ,0x x

u
  




 


 

,0 ,0

v
w  




  


 ,0 ,0x x

u v
   

 

 
  
 

 (5)  
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2x x

w
k Rk




  


 

2

2

v w
k Rk 

 

 
  
 

 

2 3 1
 2

2 2
x x

w v u
k Rk  

   

  
    

   
 (6)  

 

where 
,0 ,0 ,0 ,0 ,0 ,0( , , ) ( , , )x x x x        

 
are middle surface strains of the shell, ( , , )x xk k k   are the 

nondimensional middle surface changes in curvature and torsion, η = x / L is the nondimensional 

longitudinal coordinate of the shell and α = R / L. 

 

3.2. Force and moment resultants 

The nondimensional force ( , , , , x x xN N N Q Q   ) and moment ( , , x xM M M  ) resultants can be 

written in the following form [39] 

 

,0 ,0
x

x x

N
N

J
     

,0 ,0x

N
N

J


      

,0

(1 )

2

x
x x

N
N

J


 





   (7)  

2

, , ,

(1 )

2
x x x x x x

R
Q R k k k Q

R D
  




 
    

 
  

2

, , ,

(1 ) 1

2
x x x

R
Q R k k k Q

R D
     




 
    

 
 (8)  

x x x

R
M k k M

D
    

x

R
M k k M

D
      

(1 )

2
x x x

R
M k M

D
  


   (9)  

 

where ( , , , , x x xN N N Q Q   ) are the force resultants per unit length of the shell, ( , , x xM M M  ) are 

the moment resultants per unit length of the shell, 2/ (1 )J Eh    and 3 2/ (12(1 ))D Eh   . 

 

3.3. Elastic strain energy 

According to the Sanders-Koiter theory, the elastic strain energy U of a circular cylindrical shell is 

written in the form [41] 
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1 2 /2

0 0 /2

1
( ) 

2

h

x x x x

h

U LR d d dz



          


      (10)  

 

The elastic strain energy U can be nondimensionalized, let Ũ be the nondimensional elastic strain 

energy, it can be expressed in the form 

 

1 2

2 2 2

,0 ,0 ,0 ,0 ,02

0 0

1 22
2 2 2

0 0

1 1 (1 )
2   

2 1 2

(1 )
 2  

12 2
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x x x

U d d

U
k k k k k d d

A



  



  


      



 
  

  
     

  

 
     

  

 

 

 (11)  

 

where A = EhLR and β = h / R. 

 

3.4. Kinetic energy 

The kinetic energy T of a cylindrical shell (rotary inertia effect being neglected) is given by [41] 

 

1 2

2 2 2

0 0

1
 ( ) 

2
T hLR u v w d d



       (12)  

 

where ρ is the mass density of the shell and the overdot denotes a time derivative. 

The time variable t can be nondimensionalized by introducing a reference natural frequency ω0 in 

the following form [38] 

 

1

0t  
                              0 2 2(1 )

E

R


 



 (13)  

 

where τ is the nondimensional time variable. 

The velocity fields ( , , u v w ) can be nondimensionalized by considering the radius R and the 

reference natural frequency ω0 in the following form 

 

'

0u R u
                              

' du
u

d
  (14)  

'

0v R v
                              

' dv
v

d
  (15)  
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'

0w R w
                              

' dw
w

d
  (16)  

 

where ( ' ' ', , u v w ) are the nondimensional velocity fields. 

Let T  be the nondimensional kinetic energy, which is expressed in the form 

 

2 2 2

2 2 21 2 1 2

' ' '

0 0 0 0

1 1
 ( )  

2 2

du dv dw T
T u v w d d d d

d d d A

 

   
   

      
            

       
     (17)  

 

where γ = ρR
2
ω0

2
 / E. 

 

3.5. Linear vibration analysis (complete Sanders-Koiter shell theory) 

In the linear vibration analysis, the three nondimensional displacement fields are expanded by using 

a double mixed series, then the Rayleigh-Ritz method is applied to the linearized formulation of the 

problem, in order to obtain approximated eigenfunctions. The linear vibration analysis is carried out 

considering only the quadratic terms in equation (10). 

A modal vibration, i.e., a synchronous motion, can be formally written in the form [43] 

 

( , , ) ( , ) ( )u U f       ( , , ) ( , ) ( )v V f       ( , , ) ( , ) ( )w W f       (18)  

 

where U (η, θ), V (η, θ), W (η, θ) describe the mode shape of the shell and f (τ) represents the 

common time law, which is supposed to be the same for each displacement field in the modal 

vibration analysis. 

The mode shape ( , , U V W ) is expanded by means of a double mixed series, in terms of m-th order 

Chebyshev polynomials Tm
*
(η) in the axial direction and harmonic functions (cos nθ, sin nθ) in the 

circumferential direction, in the following form [43] 

 

*

,

0 0

( , ) ( )cos
uM N

m n m

m n

U U T n   
 

  (19)  

*

,

0 0

( , ) ( )sin
vM N

m n m

m n

V V T n   
 

  (20)  

*

,

0 0

( , ) ( )cos
wM N

m n m

m n

W W T n   
 

  (21)  
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where Tm
*
 = Tm (2η – 1), m is the polynomials degree, n denotes the number of nodal diameters and 

(
,m nU , 

,m nV , 
,m nW ) are unknown coefficients. 
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3.5.1. Boundary conditions 

Clamped and free SWNTs are now analysed; the boundary conditions are imposed by applying 

constraints to the unknown coefficients (
,m nU , 

,m nV , 
,m nW ) of the expansions (19), (20), (21). 

 

3.5.1.1. Clamped-clamped 

Clamped – clamped boundary conditions are given by [43] 

 

0u   0v   0w   , 0w   0,1   (22)  

 

where (·),η = ∂(·)/∂η. 

The previous conditions imply the following equations [43] 

 

*

,

0

( ) 0
uM

m n m

m

U T 


  [0,2 ]   [0, ]n N  (23)  

*

,

0

( ) 0
vM

m n m

m

V T 


  [0,2 ]   [0, ]n N  (24)  

*

,

0

( ) 0
wM

m n m

m

W T 


  [0,2 ]   [0, ]n N  (25)  

*

, ,

0

( ) 0
wM

m n m

m

W T  


  [0,2 ]   [0, ]n N  (26)  

 

The linear algebraic system given by the equations (23-26) can be solved analytically in terms of 

the coefficients (
0, 1, 0, 1, 0, 1, 2, 3,, , , , , , , n n n n n n n nU U V V W W W W ), for n[0, N]. 

 

3.5.1.2. Free-free 

Free – free boundary conditions are given by [43] 

 

0xN   0x xN M    0x
x

M
Q 




 


 0xM   0,1   (27)  

 

It can be observed that the boundary conditions (27) applied at the free edges of the SWNTs are of 

natural type; since the Rayleigh-Ritz method is used for finding the solution, just the geometric 

boundary conditions have to be exactly satisfied: it means that it is not necessary to satisfy the 
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natural conditions (27) by the expansions (19), (20), (21) since they will be satisfied by the 

minimization of the energy of the system. 

 

3.5.2. Rayleigh-Ritz method 

The maximum number of variables needed for describing a general vibration mode with n nodal 

diameters is obtained by the relation (Np = Mu + Mv + Mw + 3 – p), where (Mu = Mv = Mw) denote 

the degree of the Chebyshev polynomials and p describes the number of equations needed to satisfy 

the boundary conditions. 

A specific convergence analysis is carried out to select the degree of the Chebyshev polynomials: 

degree 11 is found suitably accurate, (Mu = Mv = Mw = 11), see Refs. [41-43] for the details. 

For a multi-mode analysis including different values of nodal diameters n, the number of degrees of 

freedom of the system is computed by the relation (Nmax = Np × (N + 1)), where N represents the 

maximum value of the nodal diameters n considered. 

For example, in the case of a SWNT with free edges (p = 0), the number of degrees of freedom of 

the system with (n = 2) nodal diameters is equal to (Nmax = Np × (N + 1) = 36 × (2 + 1) = 108). 

Equations (18) are inserted into the expressions of the elastic strain energy U , eq. (11), and kinetic 

energy T , eq. (17), to compute the Rayleigh quotient R ( q ) = maxU / *T , where maxU = max (U ) is 

the maximum of the potential energy during a modal vibration, *T = maxT / ω
2
 , maxT = max (T ) is the 

maximum of the kinetic energy during a modal vibration, ω represents the circular frequency of the 

synchronous harmonic motion  f (τ) = cos ωτ; q  is a vector containing all the unknown variables (its 

structure depends on the boundary conditions) [43] 

 

,

,

,

...

q

...

m m

m n

m n

U

V

W

 
 
 
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
 
 
 
  

 

 

 

(28) 

 

After imposing the stationarity to the Rayleigh quotient, one obtains the eigenvalue problem [43] 

 

2( M K)q 0    (29)  
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which furnishes approximate natural frequencies (eigenvalues) and mode shapes (eigenvectors and 

eigenfunctions). 

The approximate mode shape of the j-th mode is given by the equations (19), (20), (21), where the 

coefficients (
, . ,, , m n m n m nU V W ) are substituted with (      

, , ,, , 
j j j

m n m n m nU V W ), which denote the components 

of the j-th eigenvector q j
 of the equation (29). 

The vector function [43] 

 

( )

( ) ( )

( )

( , )

Q ( , ) ( , )

( , )

j

j j

j

U

V

W

 
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 

 
 

  
 
 

 (30)  

 

is the approximation of the j-th eigenfunction vector of the original problem. 
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4. Reduced Sanders-Koiter shell theory (analytical solution)

In the present section, a reduced form of the Sanders-Koiter shell theory is developed. Also in this 

model, the transverse shear strains (γxz, γθz) are neglected. In the present work, we consider small 

amplitude vibrations of CNTs, and a potential energy is predominantly due to bending, torsion and 

longitudinal tensions. Therefore, we can suppose that both in-plane circumferential normal strain 

and tangential shear strain of the middle surface of the shell (εθ,0, γxθ,0) are “small differences of 

relatively large quantities” [38], and they can be neglected. Due to this assumption, one can reduce 

the number of dependent variables; both the longitudinal and the circumferential displacements can 

be expressed via the radial one. 

By assuming the linear expansions of the longitudinal u , circumferential v  and radial w  

displacement fields as 

 

i( , , ) ( )cosˆ ( )eUu n        (31)  

iˆ( , , ) ( )sin( )ev V n        (32)  

iˆ( , , ) ( )cos( )ew W n        (33)  

 

using the condition of absence of ring (in-plane circumferential) deformation effects 

 

,0 0
v

w



  


 (34)  

 

and the condition of absence of tangential shear deformation effects 

 

,0 0x

u v
 

 

 
  
 

 (35)  

 

we can obtain the following expressions for the nondimensional variables V̂ and Û as functions of 

the radial displacement Ŵ  

 

ˆ ( )ˆ( )
W

V
n


    (36)  

2

ˆ ( )ˆ ( )
W

U
n

 





 


 (37)  
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4.1. Equations of motion 

In order to get the adequate equation of motion in terms of Ŵ one cannot insert these relations into 

equations of motion (1.120) of Ref. [38] because of the “reactive” nature of the circumferential and 

tangential shear reduced forces. Therefore, we have to start from the following “force” form of the 

equations of motion 

 

2

2
0

2

x x xN N Mu  


   

  
   

   
 (38)  
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2 2

3
0

2

x xN N M Mv      
    

   
    

    
 (39)  

2 2 22
2

2 2 2
2 0x xM M Mw

N  
    

    

  
    

    
 (40)  

 

where ( ,  ,  x xN N N  ) and ( ,  ,  x xM M M  ) are the reduced force and moment resultants, 

respectively. 

The procedure of the equations reduction consists of a consecutive definition of the expressions for 

xN   and N  from the equations (38) and (39), and their substitution into the equation (40). 

Let us consider these actions in detail. 

We take into account that the reduced forces and momenta have the following form 

 

i( , , ) ( )cos( )exN n 

        (41)  

i( , , ) ( )cos( )eN n 

         (42)  

i( , , ) ( )sin( )exN n 

         (43)  

i( , , ) ( )cos( )exM n 

        (44)  

i( , , ) ( )cos( )eM n 

         (45)  

i( , , ) ( )sin( )exM n 

         (46)  

 

Substituting these relationships into equations (38-40), we obtain the relations 

 

2 ˆ 0
2

U n n


 

 
   




    


 (47)  



24 

 

2 2 3ˆ 0
2

V n n n
 

 

 
     

 

 
     

 
 (48)  

2

2 2 2

2
ˆ 2 0W n n

 

 

 
      

 

 
     

 
 (49)  

 

Then, we can obtain   from equation (47) and substitute the result into equation (48), the same 

procedure applies to  that is substituted into equation (49). 

The last step is to express the remaining reduced forces and momenta via the corresponding 

deformations excluding the variables V̂  and Û  by the relations (36) and (37), respectively. 

The final equation of motion for the nondimensional radial displacement field Ŵ  is given by 

 

2 2 2 2 2 2 2
2 2 2

2 2 2 2

2 4 4 2 4
4

2 2 2 2 2 2 4

ˆ ˆ( 1) ( 1)( 1 )ˆ
1 6( 1)
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W n n n n W
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n n

W n W

n n n n


  
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 


  

     
 

   

  
  

    

 (50)  

 

where the time dependence of the radial displacement is taken into account explicitly. 

The same equation can be obtained taking into account only the bending, torsion and longitudinal 

stresses in the expression of the strain energy and expressing the longitudinal and circumferential 

displacements via the radial one before the application of the variational procedure. 

 

4.2. Boundary conditions 

In the present section, both periodic and free-free boundary conditions are considered. 

 

4.2.1. Periodic boundary conditions 

In the case of periodic boundary conditions, equation (50) leads to the dispersion equation 

 

2 4 2 2 2 2 2 2 2 2 2 4 2 4 4 4
2

4 2 2 2 2

( 1) 2 ( 1)( (1 )) (12 )

12( )

n n j n n n n j

n n j

       


 

      


 
 (51)  

 

where j describes the number of half-waves along the CNT axis. 
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4.2.2. Free-free boundary conditions 

Using equation (50) and assuming ˆ iW We  one obtains 

 

2 2 4
2 2 2 2

2 2 4
0

W W W
W W c A B 

  

  
     

  
 (52)  

 

where 
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
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 (53)  

2

2 2( 1)
A

n n





                              

4 2
4

2 2

12

12 ( 1)

n
B

n n








 (54)  

 

We can factorize equation (52) as follows 

 

2 2
2 2

2 2
0B W 

 

   
    

   
 (55)  

 

where the parameters μ and γ are coupled by the relations 

 

2 2
2 2

B


 




                              

2 2
2 2 A c

B


 


   (56)  

 

The general solution of equation (55) contains both a harmonic-type solution and an aperiodic 

exponential-type one in η; the latter one plays the role of the edge layer, where the parameter  

specifies its magnitude. In such a case the parameter μ is an effective wave number.

  
This equation should be completed with the free-free boundary conditions at (η = 0) and (η = 1), in 

terms of the radial displacement W .

 
The first boundary condition corresponds to the absence of bending moment xM  at the free edges 

of the carbon nanotube, which leads to the following relation 

 

2
2 2

2
0  ( 1) 0x

W
M n W

d
 




    

                    

(0,1)   (57)  
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The second boundary condition is related with the transverse force xQ  combined with the torsional 

moment xM   at the free edges of the carbon nanotube, and it leads to the following relation 

 

3
2 2
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0  ( 1)(2 ) 0x

x

M W W
Q n

R

  
  

  
      

                       

(0,1)   (58)  

 

It should be noted that the two remaining boundary conditions are 

 

0xN 
                              

0x xN M    (59)  

 

such conditions are satisfied thanks to the exclusion procedure discussed above. 

 

4.3. General solution 

The general solution of the equation (55) can be written as follows 

 

1 1 2 2 3 3( ) cos( ) exp( ) exp( )W c c c              (60)  

 

where (c1, c2, c3) and (δ1, δ2, δ3) are nondimensional parameters to be determined. 

In equation (60), there are both symmetric and asymmetric constituents corresponding to an even 

and odd number of half-waves along the η-axis of the CNT. 

The respective values of the nondimensional parameters for the symmetric solution (even number 

of longitudinal half-waves) are 

 

2 3c c  
1

2


    2 3

2


     (61)  

 

and in the asymmetric one (odd number of longitudinal half-waves) we have 

 

2 3c c   
1

2 2

 
     2 3

2


     (62)  

 

We can rewrite the symmetric and asymmetric solutions as follows 
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2cos[ ( 1/ 2)] sinh ( 1/ 2)
2

sW b


  
 

    
 

 (63)  

 sin[ ( 1/ 2)] sinh ( 1/ 2)aW b        (64)  

 

where the parameter b plays the role of the edge layer amplitude. 

By substituting these expressions into relations (57) and (58), we finally obtain two transcendent 

equations with respect to parameters μ and b, which must be solved numerically. 
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5. Numerical results 

In Table 1, effective and equivalent parameters of Single-Walled Carbon Nanotubes are reported 

[28]. These parameters are used to carry out comparisons with experiments and MD simulations, 

i.e. the model validation. 

The diameter D of a CNT can be directly calculated from its chirality indices (r, s) as follows 

 

2 2( )
a

D r rs s


    (65)  

 

r and s identify the chiral vector, which gives the rolling direction of a honeycomb crystal lattice of 

graphene; a = 0.246 nm. 

Therefore, a carbon nanotube modelled as a thin circular cylindrical shell is uniquely described by 

the length L and by the indices (r, s), which allow to determine the CNT diameter D. L and D are 

mutually connected by the aspect ratio χ = L / D. Therefore, (r, s, χ) are the independent variables of 

a SWNT.  

 

5.1. Validation of the numerical approach in linear field 

In this section, the numerical model based on the Sanders-Koiter shell theory is validated in linear 

field. The natural frequencies of the carbon nanotubes based on this theory are compared with data 

available in the literature: experiments, Molecular Dynamics (MD) simulations and Finite Element 

Analyses (FEA). In Tables 2-5 all the comparisons are reported. These comparisons show that the 

Sanders-Koiter theory and the present approach of solution give excellent results in terms of natural 

frequencies. Furthermore, this proves that the equivalent parameters are correct. In the following 

subsections, detailed comments regarding this validation are given. 

 

5.1.1. Radial Breathing Mode (RBM) 

The RBM is the specific vibrational mode which is often used in order to identify experimentally 

the CNTs by Resonant Raman Spectroscopy. 

This mode corresponds to the “vibrational” numbers (j = 0, n = 0), and its natural frequency can be 

easily calculated in the framework of the Sanders-Koiter elastic shell theory. The RBM appears 

only in the case of free-free boundary conditions. 

The existing data for vibrations of CNTs are mainly focused on the radial breathing mode of 

SWNTs and MWNTs because the spectrum of nanotubes is quite complex. Moreover, the natural 
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frequency associated with the radial breathing mode of SWNTs is inversely proportional to the tube 

diameter and independent from the length (aspect ratio χ) and chirality (symmetry) of the nanotube.  

For the radial breathing mode, the radial displacement field w (η, θ, τ) is spatially uniform, i.e., it is 

independent of η and θ ( w  = w (τ)). In this special case, the bending stiffness of the SWNTs does 

not appear because the radial breathing vibration does not involve the bending deformation and 

corresponds to an uniaxial stress state of the graphene sheet. 

Resonant Raman Spectroscopy (RRS) provides a powerful technique to study the quantum 

properties of electrons and phonons in carbon nanotubes and to determine their atomic structure, 

i.e., the chirality indices (r, s), of an isolated SWNT. The radial breathing mode exhibits strong 

resonant characteristics in the Raman spectra, because it corresponds to the symmetric in-phase 

motion of all the carbon atoms in the radial direction of the tube. In this configuration all the carbon 

atoms undergo the same radial displacement. 

The RRS of a SWNT allows a unique assignment of its chirality to be made by measuring the RBM 

frequency ωRBM and using the theory of the resonant transitions. By considering the frequency and 

the intensity of the RBM mode in the RRS spectra, it is possible to assign the correct chirality (r, s) 

to the resonant SWNT. 

The natural frequencies of the radial breathing vibration mode based on the present numerical 

model are in good agreement with the experimental RRS results. Table 2 presents a comparison for 

different armchair, zigzag and chiral SWNTs under free-free boundary conditions, relative errors 

are less than 5%, it appears a satisfactory accuracy. 

Molecular Dynamics Simulations (MDS) allow to study the free vibrations of armchair, zigzag and 

chiral SWNTs with different geometries and boundary conditions, taking into account the atomic 

structure and the potential energy of the carbon atoms. 

Three stiffness parameters, i.e., the tensile resistance EA, the flexural rigidity EI and the torsional 

stiffness GJ need to be determined for the deformation analysis in the MDS, where E and G are the 

Young’s and shear moduli, A and J are the cross-section area and polar inertia of the equivalent 

beam. 

The interaction between carbon atoms is specified by using the MD potentials associated with bond 

stretching, changes in angles between adjacent bonds, bond torsion and inversion, Van der Waals 

and electrostatic interactions, coupling among stretching, bending and torsional deformations. 

Results based on the present numerical model for different armchair and zigzag SWNTs under free-

free boundary conditions are shown in Table 3. The present numerical model is in good agreement 

with the MDS of radial breathing modes, with relative errors less than 4%. 
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5.1.2. Beam-Like Modes (BLMs) 

The accuracy of the present numerical model is now assessed for beam-like modes (n = 1) by means 

of comparisons with MD simulations and FE analyses. 

The natural frequencies of the beam-like modes obtained with the present numerical model are in 

good agreement with the MDS results. The comparisons shown in Table 4 for an armchair (5, 5) 

SWNT with different aspect ratios χ under clamped-free and clamped-clamped boundary conditions 

denote relative errors smaller than 5%. 

In particular, in Table 4 it may be seen that the percent difference between the present theory and 

MDS, for the first four flexural modes, decreases as the length of the nanotube increases, i.e., when 

the influence of the boundary conditions on the natural frequencies is reduced. Furthermore, the 

natural frequencies under clamped-free boundary conditions are greater than those under clamped-

clamped boundary conditions for the correspondent vibration modes. 

The atomistic Finite Element (FE) model of the SWNTs is based on the equivalent structural beam 

elements and concentrated masses. Time efficiency and computational simplicity are the advantages 

of FE method in comparison with other atomistic simulation approaches, such as classical MDS, in 

the study of natural frequencies and mode shapes of the SWNTs. 

In FE analyses, the beam elements represent the joints of the covalent bonds, where the beam length 

is assumed to be equal to the covalent bond distance of the carbon atoms in the hexagonal lattice. 

The elastic properties (extensional, bending and torsional stiffness) of the beam element are 

calculated to simulate the interatomic covalent forces and the potential energies of the CNT. 

On the other hand, the concept of concentrated masses is adopted to simulate the carbon atoms. 

They are located at the ends of the beam elements connecting the carbon atoms, forming hexagonal 

cells on the nanotube surface: natural frequencies and mode shapes are then obtained through the 

eigen-analysis of the lattice cylindrical shell structure by considering mass and stiffness matrices. 

Results based on the present shell theory are compared with FEA results found in literature, Table 

5. Different zigzag SWNTs with various aspect ratios χ under clamped-free and clamped-clamped 

boundary conditions are investigated. The present numerical model is in good agreement with the 

atomistic FEA for beam-like vibration modes, with relative errors less than 6%. Also in the present 

case, the percent difference between the present method and FEA analyses, for the first four flexural 

modes, decreases as the length of the nanotube increases, when the influence of the boundary 

conditions on the natural frequencies is reduced. Again, the natural frequencies under clamped-free 

boundary conditions are greater than those under clamped-clamped boundary conditions. 
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5.2. Dispersion curves of the analytical approach 

In this section, the accuracy of the analytical model based on the reduced Sanders-Koiter theory is 

studied. The equivalent parameters of Table 1 are used and numerical solutions of the transcendent 

equations for zigzag (10, 0) SWNTs of various lengths are obtained. 

In Figure 2 the eigenfrequencies, calculated with the dispersion relation (51), are shown; different 

lengths are considered, the boundary conditions are periodic, j is the number of half waves along the 

CNT axis and n = 2 denotes the number of nodal diameters. From this figure, it is confirmed that 

the natural frequency of a vibrational mode (j, n) increases with the number of longitudinal half 

waves and decreases with increasing length. 

It is significant to compare the results of the dispersion relation (51), from the reduced Sanders-

Koiter theory (RSKT), with those corresponding to the exact solution (Equation 1.120 of Ref. [38]). 

This may be seen in Figure 3 and Table 6. From the comparisons, it may be observed that the exact 

solution and the RSKT are in good agreement in the case of a small number of half waves along the 

CNT axis (j ≤ 3), when the ring and tangential shear deformation effects are small. On the other 

hand, the difference increases with j. 

In Figure 4 and Table 7, the dependence of the eigenfrequencies of the first four modes on the ratio 

(α = R / L) of a CNT having (r, s) = (10, 0) is shown; the eigenfrequencies decrease as the CNT 

length increases. In the limit α → 0, the eigenfrequency is the same for any wave number j, because 

it corresponds to the eigenfrequency of a thin circular ring, in the following form [44] 

 

2

2

( 1)

12( 1)

n n

n
 





 (66)  

 

5.3. Comparison between the models 

In this section, the analytical and numerical models, based on the reduced Sanders-Koiter theory 

(RSKT) and the complete Sanders-Koiter theory (CSKT), are compared. 

RSKT can be applied to the calculation of the eigenfrequencies of CNT vibrations with “angular 

vibration number” n ≥ 2 [44]. The approximations of the RSKT with respect to the CSKT take into 

account the relative smallness of the bending and torsion stiffness with respect to those of tension 

and shear. This involves a correct description of long-wave modes: the range of RSKT applicability 

can be extended for an increased length of CNT. 

The results of the RSKT and the CSKT for different lengths and boundary conditions of a (10, 0) 

SWNT are shown in Tables 8-9 and Figures 5-8. From the comparisons, it can be firstly noted that 

the differences between RSKT and CSKT are significant for short CNTs in a large range of 
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longitudinal waveform numbers j, as expected. Indeed, in this case the effect of the circumferential 

and tangential shear deformations is not negligible. Furthermore, when the length of the CNT 

increases, differences between RSKT and CSKT decrease, because the influence of the boundary 

conditions on the natural frequencies reduces. 

In Figure 9, the first six mode shapes of a (r = 10, s = 0, χ = 12.8) SWNT with free edges for the 

circumferential wavenumber (n = 2) are reported. These mode shapes are obtained by using the 

equivalent parameters (h, E, ν, ρ) of Table 1. The modes (j = 0, n = 2) and (j = 1, n = 2) correspond 

to the Rayleigh’s inextensional symmetric mode (uniform vibration) and Love’s asymmetric mode 

(one-half of the wave length), respectively (Ref. [38]). The modes (j = 2, n = 2) (wave length) and (j 

= 4, n = 2) are symmetric, the modes (j = 3, n = 2) and (j = 5, n = 2) are asymmetric, with respect to 

the central transversal section of the CNT. Such graphical representation of modes could be useful 

for interpreting the previous results and comparisons. 
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6. Conclusions 

In this paper, a comprehensive analysis of the vibration spectrum of Single-Walled Carbon 

Nanotubes in the framework of the continuum shell theory is presented. 

Size effects are neglected because the present paper is focused on low frequencies of SWNTs with 

large aspect ratios and diameters. 

Significant results concerning applicability, experimental verification and possibility of analytical 

study for the most important boundary conditions are presented. 

1. The results obtained from a numerical model based on the Sanders-Koiter shell theory, which 

does not introduce any restriction on the geometric parameters and wave numbers, are in excellent 

agreement with the existing experimental and molecular dynamics data. 

→ a. The theory is accurate for SWNTs having large aspect ratios and diameters. 

2. An analytical model based on a reduced version of the Sanders-Koiter shell theory is presented. It 

supplies a new tool valid in a wide parameter range, where other simpler elastic shell theories (e.g., 

Donnell shallow shell or semi-momentless theories) are not accurate. 

→ a. The analytical model gives results close to those from the numerical model for low-frequency 

normal vibrations. 

→ b. The possibility of having an efficient analytical solution allows the spatial structure of normal 

modes to be clarified: in particular, it reveals the edge effects and their prolongation, which are 

dependent on the geometric parameters and wave numbers. 

Starting from the two models presented here, a future work will consider the energy distribution on 

the carbon nanotube in nonlinear field, including the presence of conjugate modes, which can give 

rise to travelling-wave response moving along the circumferential direction of the CNT. 
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Effective thickness h0 (nm) 0.10 ÷ 0.15 

Equivalent thickness h (nm) 0.066 

Effective Young’s modulus E0 (TPa) 1.0 ÷ 2.0 

Equivalent Young’s modulus E (TPa) 5.5 

Effective Poisson’s ratio ν0 0.12 ÷ 0.28 

Equivalent Poisson’s ratio ν 0.19 

Surface density of graphite σ (kg/m
2
) 7.718 × 10

-7
 

Equivalent mass density ρ (kg/m
3
) 11700 

Table 1. Effective and equivalent parameters of the Single-Walled Carbon Nanotubes [28]. 
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Natural frequency (THz) Difference % 

(r, s) CSKT – Present model RRS – Ref. [4]  

(8, 7) 6.905 7.165 3.63 

(10, 5) 6.785 7.105 4.50 

(11, 4) 6.669 6.865 2.85 

(14, 1) 6.177 6.295 1.87 

(18, 0) 5.025 5.276 4.76 

(17, 2) 4.964 5.216 4.83 

(16, 4) 4.895 5.066 3.37 

(15, 6) 4.788 4.947 3.21 

(11, 11) 4.711 4.917 4.19 

(19, 1) 4.594 4.797 4.23 

(18, 3) 4.559 4.737 3.76 

(13, 10) 4.494 4.677 3.91 

(17, 5) 4.494 4.677 3.91 

(16, 7) 4.393 4.617 4.85 

(12, 12) 4.318 4.527 4.62 

(21, 0) 4.271 4.437 3.74 

(18, 6) 4.150 4.317 4.04 

Table 2. Natural frequencies of the radial breathing mode (j = 0, n = 0): comparisons between the complete Sanders-

Koiter theory (CSKT) and the Resonant Raman Spectroscopy (RRS). 
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Natural frequency (THz) Difference % 

(r, s) CSKT – Present model MDS – Ref. [7]  

(10, 0) 8.966 8.718 2.84 

(6, 6) 8.636 8.348 3.45 

(12, 0) 7.478 7.272 2.83 

(7, 7) 7.399 7.166 3.25 

(8, 8) 6.473 6.275 3.15 

(14, 0) 6.414 6.235 2.87 

(16, 0) 5.606 5.455 2.77 

(10, 10) 5.184 5.026 3.14 

(18, 0) 4.985 4.850 2.78 

(20, 0) 4.489 4.364 2.86 

(12, 12) 4.318 4.190 3.05 

(25, 0) 3.590 3.491 2.84 

(15, 15) 3.453 3.354 2.95 

(30, 0) 2.991 2.908 2.85 

(18, 18) 2.878 2.796 2.93 

(33, 0) 2.718 2.623 3.62 

(20, 20) 2.590 2.516 2.94 

Table 3. Natural frequencies of the radial breathing mode (j = 0, n = 0): comparisons between the complete Sanders-

Koiter theory (CSKT) and the Molecular Dynamics Simulations (MDS). 
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Natural frequency (THz) Difference % 

(r, s) = (5, 5) χ = 5.26  

Clamped – Free CF  

(j, n) CSKT – Present model MDS – Ref. [8]  

(0, 1) 0.217 0.212 2.36 

(1, 1) 1.071 1.043 2.68 

(2, 1) 2.411 2.340 3.03 

(3, 1) 3.800 3.682 3.20 

Clamped – Clamped CC  

(j, n) CSKT – Present model MDS – Ref. [8]  

(1, 1) 1.018 0.975 4.41 

(2, 1) 2.192 2.105 4.13 

(3, 1) 3.529 3.404 3.67 

(4, 1) 4.858 4.724 2.84 

(r, s) = (5, 5) χ = 10.34  

Clamped – Free CF  

(j, n) CSKT – Present model MDS – Ref. [8]  

(0, 1) 0.058 0.060 3.33 

(1, 1) 0.338 0.344 1.74 

(2, 1) 0.856 0.864 0.93 

(3, 1) 1.494 1.499 0.33 

Clamped – Clamped CC  

(j, n) CSKT – Present model MDS – Ref. [8]  

(1, 1) 0.335 0.336 0.30 

(2, 1) 0.819 0.818 0.12 

(3, 1) 1.428 1.417 0.78 

(4, 1) 2.095 2.079 0.77 

Table 4. Natural frequencies of the beam-like modes (n = 1): comparisons between the complete Sanders-Koiter theory 

(CSKT) and the Molecular Dynamics Simulations (MDS). 



42 

 

 

Natural frequency (THz) Difference % 

(r, s) = (8, 0) χ = 24.29  

Clamped – Free CF  

(j, n) CSKT – Present model FEA – Ref. [9]  

(0, 1) 0.011 0.011 0.00 

(1, 1) 0.072 0.068 5.88 

(2, 1) 0.196 0.185 5.94 

(3, 1) 0.372 0.354 5.08 

Clamped – Clamped CC  

(j, n) CSKT – Present model FEA – Ref. [9]  

(1, 1) 0.072 0.069 4.35 

(2, 1) 0.194 0.186 4.30 

(3, 1) 0.368 0.354 3.95 

(4, 1) 0.583 0.565 3.19 

(r, s) = (20, 0) χ = 19.60  

Clamped – Free CF  

(j, n) CSKT – Present model FEA – Ref. [9]  

(0, 1) 0.007 0.007 0.00 

(1, 1) 0.043 0.043 0.00 

(2, 1) 0.118 0.117 0.85 

(3, 1) 0.220 0.220 0.00 

Clamped – Clamped CC  

(j, n) CSKT – Present model FEA – Ref. [9]  

(1, 1) 0.044 0.044 0.00 

(2, 1) 0.116 0.116 0.00 

(3, 1) 0.216 0.217 0.46 

(4, 1) 0.338 0.340 0.59 

Table 5. Natural frequencies of the beam-like modes (n = 1): comparisons between the complete Sanders-Koiter theory 

(CSKT) and the Finite Element Analyses (FEA).
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Natural frequency (THz) Difference % 

(r, s) = (10, 0) χ = 7.66  

(j, n) 
Exact solution (Eq. 

(1.120), Ref. [38]) 
RSKT (Eq. (51)) 

 

(0, 2) 1.14749 1.17233 2.12 

(1, 2) 1.16069 1.18721 2.23 

(2, 2) 1.23115 1.26565 2.73 

(3, 2) 1.41766 1.48565 4.58 

(4, 2) 1.74250 1.90633 8.59 

(5, 2) 2.17980 2.53387 14.0 

(6, 2) 2.69010 3.34718 19.6 

Table 6. Natural frequencies (THz) of the SWNT (L = 6.0 nm): comparisons between the exact solution of the equations 

of motion (Eq. (1.120), Ref. [38]) and the reduced Sanders-Koiter theory (RSKT) (Eq. (51)). 
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(r, s) = (10, 0) Natural frequency (THz) 

L (nm) α = R / L j = 1 j = 2 j = 3 j = 4 

7.80 0.05019 1.17602 1.20963 1.29762 1.46452 

7.41 0.05283 1.17693 1.21580 1.31833 1.51060 

7.02 0.05577 1.17802 1.22341 1.34377 1.56614 

 6.63 0.05905 1.17936 1.23292 1.37530 1.63345 

6.24 0.06274 1.18101 1.24495 1.41474 1.71547 

5.85 0.06692 1.18309 1.26042 1.46452 1.81592 

5.46 0.07170 1.18575 1.28062 1.52796 1.93962 

5.07 0.07722 1.18923 1.30745 1.60954 2.09278 

4.68 0.08365 1.19391 1.34377 1.71547 2.28352 

4.29 0.09126 1.20038 1.39390 1.85430 2.52258 

 3.90 0.10038 1.20963 1.46452 2.03800 2.82435 

3.51 0.11154 1.22341 1.56614 2.28352 3.20852 

3.12 0.12548 1.24495 1.71547 2.61536 3.70280 

2.73 0.14341 1.28062 1.93962 3.06980 4.34777 

 2.34 0.16731 1.34377 2.28352 3.70280 5.20730 

1.95 0.20077 1.46452 2.82435 4.60626 6.39689 

1.56 0.25096 1.71547 3.70280 5.95247 8.18521 

Table 7. Dependence of the eigenfrequencies of the first four modes on the ratio (α = R / L) of the (r, s) = (10, 0) CNT 

for the reduced Sanders-Koiter theory (RSKT) (Eq. (51)) with periodic boundary conditions.
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Natural frequency (THz) Difference % 

(r, s) = (10, 0) χ = 3.83  

(j, n) CSKT RSKT  

(0, 2) 1.18809 1.17233 1.34 

(1, 2) 1.21558 1.28695 5.55 

(2, 2) 1.52195 1.79994 15.4 

(3, 2) 2.32386 2.75450 15.6 

(4, 2) 3.43668 4.21802 18.5 

(5, 2) 4.63191 6.13461 24.5 

(r, s) = (10, 0) χ = 12.8  

(j, n) CSKT RSKT  

(0, 2) 1.17397 1.17233 0.14 

(1, 2) 1.17633 1.17857 0.19 

(2, 2) 1.19469 1.20186 0.60 

(3, 2) 1.22705 1.25319 2.09 

(4, 2) 1.29110 1.34579 4.06 

(5, 2) 1.39923 1.49071 6.14 

Table 8. Natural frequencies of the Single-Walled Carbon Nanotubes (L = 3.0 nm) and (L = 10.0 nm) with free edges: 

comparisons between the complete (CSKT) and reduced (RSKT) Sanders-Koiter theories.
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Natural frequency (THz) Difference % 

(r, s) = (10, 0) χ = 3.83  

(j, n) CSKT RSKT  

(1, 2) 1.38791 1.42490 2.60 

(2, 2) 2.04764 2.51265 18.5 

(3, 2) 3.02770 4.32504 30.0 

(4, 2) 4.14980 6.73340 38.4 

(5, 2) 5.32216 9.59525 44.5 

(r, s) = (10, 0) χ = 12.8  

(j, n) CSKT RSKT  

(1, 2) 1.17628 1.17947 0.27 

(2, 2) 1.20309 1.20720 0.34 

(3, 2) 1.26423 1.27119 0.55 

(4, 2) 1.36249 1.39041 2.01 

(5, 2) 1.51007 1.57960 4.40 

Table 9. Natural frequencies of the Single-Walled Carbon Nanotubes (L = 3.0 nm) and (L = 10.0 nm) with clamped 

edges: comparisons between the complete (CSKT) and reduced (RSKT) Sanders-Koiter theories. 
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List of figure captions 

 

Figure 1. Geometry of the circular cylindrical shell. (a) Complete shell; (b) cross-section of the shell surface. 

 

Figure 2. Eigenfrequencies of the first modes for the zigzag (10, 0) SWNT. Reduced Sanders-Koiter theory (Eq. (51)). 

Periodic boundary conditions. n = 2. “--”, L = 3.0 nm; “-■-”, L = 6.0 nm; “-▲-”, L = 10.0. 

 

Figure 3. Dispersion curves for the zigzag (10, 0) SWNT. L = 6.0 nm. n = 2. “--”, exact solution of (Eq. (1.120), Ref. 

[38]); “-■-”, reduced Sanders-Koiter theory (Eq. (51)). 

 

Figure 4. Dependence of the eigenfrequencies on the ratio (α = R / L). Zigzag (10, 0) SWNT. Reduced Sanders-Koiter 

theory (Eq. (51)). Periodic boundary conditions. n = 2. “--”,  j = 1; “-■-”,  j = 2; “-▲-”,  j = 3; “-x-”,  j = 4. 

 

Figure 5. Natural frequencies of the zigzag (10, 0) SWNT. L = 3.0 nm. n = 2. Free edges. “--”, complete Sanders-

Koiter theory (CSKT); “-■-”, reduced Sanders-Koiter theory (RSKT). 

 

Figure 6. Natural frequencies of the zigzag (10, 0) SWNT. L = 10.0 nm. n = 2. Free edges. “--”, complete Sanders-

Koiter theory (CSKT); “-■-”, reduced Sanders-Koiter theory (RSKT). 

 

Figure 7. Natural frequencies of the zigzag (10, 0) SWNT. L = 3.0 nm. n = 2. Clamped edges. “--”, complete Sanders-

Koiter theory (CSKT); “-■-”, reduced Sanders-Koiter theory (RSKT). 

 

Figure 8. Natural frequencies of the zigzag (10, 0) SWNT. L = 10.0 nm. n = 2. Clamped edges. “--”, complete 

Sanders-Koiter theory (CSKT); “-■-”, reduced Sanders-Koiter theory (RSKT). 

 

Figure 9. Mode shapes of the SWNT (r = 10, s = 0, L = 10.0 nm); equivalent parameters of Table 1; free edges. 

a) (j = 0, n = 2). b) (j = 1, n = 2). c) (j = 2, n = 2). d) (j = 3, n = 2). e) (j = 4, n = 2). f) (j = 5, n = 2). 
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Figure 1. Geometry of the circular cylindrical shell. 

(a) Complete shell; (b) cross-section of the shell surface.
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 Figure 2. Eigenfrequencies of the first modes for the zigzag (10, 0) SWNT. Reduced Sanders-Koiter theory 

(Eq. (51)). Periodic boundary conditions. n = 2. “--”, L = 3.0 nm; “-■-”, L = 6.0 nm; “-▲-”, L = 10.0 nm.
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Figure 3. Dispersion curves for the zigzag (10, 0) SWNT. L = 6.0 nm. n = 2. “--”, exact 

solution of (Eq. (1.120), Ref. [38]); “-■-”, reduced Sanders-Koiter theory (Eq. (51)).
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Figure 4. Dependence of the eigenfrequencies on the ratio (α = R / L). Zigzag (10, 0) SWNT. Reduced Sanders-Koiter 

theory (Eq. (51)). Periodic boundary conditions. n = 2. “--”,  j = 1; “-■-”,  j = 2; “-▲-”,  j = 3; “-x-”,  j = 4.
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Figure 5. Natural frequencies of the zigzag (10, 0) SWNT. L = 3.0 nm. n = 2. Free edges. 

“--”, complete Sanders-Koiter theory (CSKT); “-■-”, reduced Sanders-Koiter theory (RSKT). 
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Figure 6. Natural frequencies of the zigzag (10, 0) SWNT. L = 10.0 nm. n = 2. Free edges. 

“--”, complete Sanders-Koiter theory (CSKT); “-■-”, reduced Sanders-Koiter theory (RSKT).
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Figure 7. Natural frequencies of the zigzag (10, 0) SWNT. L = 3.0 nm. n = 2. Clamped edges. 

“--”, complete Sanders-Koiter theory (CSKT); “-■-”, reduced Sanders-Koiter theory (RSKT). 
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Figure 8. Natural frequencies of the zigzag (10, 0) SWNT. L = 10.0 nm. n = 2. Clamped edges. 

“--”, complete Sanders-Koiter theory (CSKT); “-■-”, reduced Sanders-Koiter theory (RSKT).



56 

 

 

a) b) 

  
c) d) 

  
e) f) 

  

Figure 9. Mode shapes of the SWNT (r = 10, s = 0, L = 10.0 nm); equivalent parameters of Table 1; free edges. 

a) (j = 0, n = 2). b) (j = 1, n = 2). c) (j = 2, n = 2). d) (j = 3, n = 2). e) (j = 4, n = 2). f) (j = 5, n = 2). 


